Advertisement

Catalysis Letters

, Volume 146, Issue 8, pp 1423–1428 | Cite as

Low Temperature Catalytic Water Gas Shift in an Electric Field

  • Yasushi Sekine
  • Kodai Yamagishi
  • Yukako Nogami
  • Ryo Manabe
  • Kazumasa Oshima
  • Shuhei Ogo
Article

Abstract

Catalytic water gas shift for hydrogen production in the temperature range of 423–873 K, was examined imposing an electric field to the catalyst bed. Reaction trends were investigated based on thermodynamic equilibrium and chemical kinetic law. Pt/La–ZrO2 was chosen as an active catalyst through our screening tests, and the effect of the electric field on the catalytic activity was investigated by changing reaction temperatures and applied electric currents. Although the reaction was ruled by thermodynamic equilibrium at high temperatures, drastic promotion of the reaction by applying the electric field was observed at low temperatures in a kinetic region. Drastic decrease of apparent activation energy for WGS was observed by imposing the electric field to the catalyst bed. Various isotopic transient tests revealed that the reaction mechanism changed by the application of electric field, and redox mechanism using surface lattice oxygen played an important role in case of the catalytic WGS in the electric field.

Graphical Abstract

Keywords

Water gas shift Catalytic reaction Electric field 

Supplementary material

10562_2016_1765_MOESM1_ESM.docx (1.3 mb)
Supplementary material 1 (DOCX 1345 kb)

References

  1. 1.
    Oshima K, Shinagawa T, Sekine Y (2013) J Jpn Petrol Inst 56(1):11–21CrossRefGoogle Scholar
  2. 2.
    Stoukides M, Vayenas CG (1980) J Catal 64:18–28CrossRefGoogle Scholar
  3. 3.
    Sekine Y, Haraguchi M, Matsukata M, Tomioka M, Kikuchi E (2010) J Phys Chem A 114:3824–3833CrossRefGoogle Scholar
  4. 4.
    Vayenas CG, Bebelis S, Yentekakis IV, Tsiakaras P, Karasali H (1990) Platin Met Rev 34:122–130Google Scholar
  5. 5.
    Vayenas CG, Bebelis S, Ladas S (1990) Nature 343:625–627CrossRefGoogle Scholar
  6. 6.
    Vayenas CG, Bebelis S, Neophytides S (1988) J Phys Chem 92:5083–5085CrossRefGoogle Scholar
  7. 7.
    Yentekakis IV, Vayenas CG (1988) J Catal 111:170–188CrossRefGoogle Scholar
  8. 8.
    Vayenas CG, Bebelis S, Neophytides S, Yentekukis IV (1989) Appl Phys 49:95–103CrossRefGoogle Scholar
  9. 9.
    Tsiakaras P, Vayenas CG (1993) J Catal 140:53–70CrossRefGoogle Scholar
  10. 10.
    Yentekakis IV, Jiang Y, Neapfytides S, Bebelis S, Vayenas CG (1995) Solid State Ion 1:491–498Google Scholar
  11. 11.
    Oshima K, Shinagawa T, Haraguchi M, Sekine Y (2013) Int J Hydrog Energy 38:3003–3011CrossRefGoogle Scholar
  12. 12.
    Oshima K, Tanaka K, Yabe T, Kikuchi E, Sekine Y (2013) Fuel 107:879–881CrossRefGoogle Scholar
  13. 13.
    Sekine Y, Haraguchi M, Matsukata M, Kikuchi E (2011) Catal Today 171:116–125CrossRefGoogle Scholar
  14. 14.
    Oshima K, Shinagawa T, Nogami Y, Manabe R, Ogo S, Sekine Y (2014) Catal Today 232:27–32CrossRefGoogle Scholar
  15. 15.
    Graf PO, de Vlieger DJM, Mojet BL, Lefferts L (2009) J Catal 262:181–187CrossRefGoogle Scholar
  16. 16.
    Azzam KG, Babich IV, Seshan K, Lefferts L (2007) J Catal 251:153–162CrossRefGoogle Scholar
  17. 17.
    Azzam KG, Babich IV, Seshan K, Lefferts L (2007) J Catal 251:163–171CrossRefGoogle Scholar
  18. 18.
    Azzam KG, Babich IV, Seshan K, Lefferts L (2008) Appl Catal A 338:66–71CrossRefGoogle Scholar
  19. 19.
    Bunluesin T, Gorte RJ, Graham GW (1998) Appl Catal B 15:107–114CrossRefGoogle Scholar
  20. 20.
    Hilaire S, Wang X, Luo T, Gorte RJ, Wagner J (2001) Appl Catal A 215:271–278CrossRefGoogle Scholar
  21. 21.
    Grenoble DC, Estadt MM (1981) J Catal 67:90–102CrossRefGoogle Scholar
  22. 22.
    Kono E, Tamura S, Yamamuro K, Ogo S, Sekine Y (2015) Appl Catal A 489:247–254CrossRefGoogle Scholar
  23. 23.
    Watanabe R, Sakamoto Y, Yamamuro K, Tamura S, Kikuchi E, Sekine Y (2013) Appl Catal A 457:1–11CrossRefGoogle Scholar
  24. 24.
    Yamamuro K, Tamura S, Watanabe R, Sekine Y (2013) Catal Lett 143(4):339–344CrossRefGoogle Scholar
  25. 25.
    Sekine Y, Chihara T, Watanabe R, Sakamoto Y, Matsukata M, Kikuchi E (2010) Catal Lett 140(3–4):184–188CrossRefGoogle Scholar
  26. 26.
    Watanabe R, Sekine Y, Takamatsu H, Sakamoto Y, Aramaki S, Matsukata M, Kikuchi E (2010) Top Catal 53(7):621–628CrossRefGoogle Scholar
  27. 27.
    Sekine Y, Takamatsu H, Aramaki S, Ichishima K, Takada M, Matsukata M, Kikuchi E (2009) Appl Catal A 352:214–222CrossRefGoogle Scholar
  28. 28.
    Pigos JM, Brooks CJ, Jacobs G, Davis BH (2007) Appl Catal A 328:14–26CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Yasushi Sekine
    • 1
  • Kodai Yamagishi
    • 1
  • Yukako Nogami
    • 1
  • Ryo Manabe
    • 1
  • Kazumasa Oshima
    • 1
  • Shuhei Ogo
    • 1
  1. 1.Department of Applied ChemistryWaseda UniversityTokyoJapan

Personalised recommendations