Advertisement

Catalysis Letters

, Volume 146, Issue 7, pp 1264–1272 | Cite as

Functional Ionic Liquids as Efficient and Recyclable Catalysts for the Methylation of Formaldehyde with Aromatics

  • Heyuan Song
  • Fuxiang Jin
  • Ronghua Jin
  • Meirong Kang
  • Zhen Li
  • Jing Chen
Article

Abstract

Methylation of formaldehyde with various aromatics under functional ionic liquids catalysis has been developed. Among the ionic liquids investigated, triphenyl-(4-sulfobutyl)-phosphonium triflate ([TTPBs][CF3SO3]) showed high activity and afforded excellent yields of diarylmethane derivatives. A mechanism for the catalytic performance of [TTPBs][CF3SO3] is proposed. Besides, the catalyst can simply be separated from the reaction mixture by centrifugation and be recycled ten times without noticeable loss of activity.

Graphical Abstract

Diarylmethane derivatives were successfully synthesized from the methylation of formaldehyde with aromatics using efficient and recyclable functional ionic liquids as catalysts, excellent yields and selectivities were obtained under solvent free conditions. The catalyst was reused at least ten consecutive recycles without noticeable loss in its catalytic activity. Meanwhile, the usability of catalyst was explored.

Keywords

Formaldehyde Methylation Diarylmethane Ionic liquids 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Project No. 21473225 and 21133011).

References

  1. 1.
    Ma JC, Dougherty DA (1997) Chem Rev 97:1303CrossRefGoogle Scholar
  2. 2.
    Bruno JG, Chang MN, Choi-Sledeski YM, Green DM, McGarry DG, Regan JR, Volz FA (1997) J Org Chem 62:5174CrossRefGoogle Scholar
  3. 3.
    Wllkinson JA, Rossington SB, Leonard J, Hussain N (2004) Tetrahedron Lett 45:5481CrossRefGoogle Scholar
  4. 4.
    Maciejewska M, Gawdzik BJ (2005) J Appl Polym Sci 95:863CrossRefGoogle Scholar
  5. 5.
    Stanchev S, Rakovska R, Berova N, Snatzke G (1995) Tetrahedron Asymmetry 6:183CrossRefGoogle Scholar
  6. 6.
    Ku YY, Patel RP, Sawick DP (1996) A General. Tetrahedron Lett 37:1949CrossRefGoogle Scholar
  7. 7.
    Prat L, Mojovic L, Levacher V, Dupas G, Queguiner G, Bourguignon J (1998) Tetrahedron Asymmetry 9:2509CrossRefGoogle Scholar
  8. 8.
    Rische T, Eilbracht P (1999) Tetrahedron 55:1915CrossRefGoogle Scholar
  9. 9.
    Granjon R, Fournier M (1982) US Patent 4,338,470Google Scholar
  10. 10.
    Mortimer S, Patel N, Cawse J (2012) US Patent 20,120,316,262,A1Google Scholar
  11. 11.
    Ort MR (1983) US Patent 4,400,554Google Scholar
  12. 12.
    de la Cruz MHC, da Silva JFC, Lachter ER (2003) Appl Catal A 245:377CrossRefGoogle Scholar
  13. 13.
    Limuro S, Ito S, Takashima T Kitamura T (1995) US Patent. 5,395,915Google Scholar
  14. 14.
    Sun HB, Huab R, Yina YG (2006) Tetrahedron Lett 47:2291CrossRefGoogle Scholar
  15. 15.
    Li ZX, Duan Z, Wu YJ (2009) Chin Chem Lett 20:511CrossRefGoogle Scholar
  16. 16.
    Bigi F, Conforti ML, Maggi R, Sartori G (2000) Tetrahedron 56:2709CrossRefGoogle Scholar
  17. 17.
    Jana SK, Okamoto T, Kugita T, Namba S (2005) Appl Catal A 288:80CrossRefGoogle Scholar
  18. 18.
    Jana SK, Kugita T, Namba S (2003) Catal Lett 90:143CrossRefGoogle Scholar
  19. 19.
    Jana SK, Takahashi H, Nakamura M, Kaneko M, Nishida R, Shimizu H, Kugita T, Namba S (2003) Appl Catal A 245:33CrossRefGoogle Scholar
  20. 20.
    Li GY, Li N, Wang ZQ, Li CZ, Wang A, Wang XD, Cong Y, Zhang T (2012) ChemSusChem 5:1958CrossRefGoogle Scholar
  21. 21.
    Li GY, Li N, Li SS, Wang A, Cong Y, Wang XD, Zhang T (2013) Chem Commun 49:5727CrossRefGoogle Scholar
  22. 22.
    Zhang X, Tu M, Paice MG (2011) Bioenerg Res 4:246CrossRefGoogle Scholar
  23. 23.
    Pinkert A, Marsh KN, Pang SS, Staiger MP (2009) Chem Rev 109:6712CrossRefGoogle Scholar
  24. 24.
    Zakrzewska ME, Bogel-Lukasik E, Bogel-Lukasik R (2011) Chem Rev 111:397CrossRefGoogle Scholar
  25. 25.
    Parvulescu VI, Hardacre C (2007) Chem Rev 107:2615CrossRefGoogle Scholar
  26. 26.
    Hallett JP, Welton T (2011) Chem Rev 111:3508CrossRefGoogle Scholar
  27. 27.
    Liu JM, Li Z, Chen J, Xia CG (2009) Catal Commun 10:799CrossRefGoogle Scholar
  28. 28.
    Song HY, Chen J, Xia CG, Li Z (2012) Synth Commun 42:1CrossRefGoogle Scholar
  29. 29.
    Song HY, Li Z, Chen J, Xia CG (2012) Catal Lett 142:81CrossRefGoogle Scholar
  30. 30.
    Song HY, Jing FX, Jin RH, Li Z, Chen J (2012) Catal Lett 144:711CrossRefGoogle Scholar
  31. 31.
    Cole AC, Jensen JL, Ntai I, Tran KL, Weaver KJ, Forbes DC, Davis JH Jr (2002) J Am Chem Soc 124:5962CrossRefGoogle Scholar
  32. 32.
    Garade AC, Kshirsagar VS, Rode CV (2009) Appl Catal A 354:176CrossRefGoogle Scholar
  33. 33.
    Cai XJ, Cui SH, Qu LP, Yuan DD, Liu B, Cai QH (2008) Catal Commun 9:1173CrossRefGoogle Scholar
  34. 34.
    Wang F, Zhu GL, Li Z, Zhao F, Xia CG, Chen J (2015) J Mol Catal A 408:228CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhouPeople’s Republic of China
  2. 2.University of Chinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations