Catalysis Letters

, Volume 146, Issue 5, pp 918–928 | Cite as

Activity of Molybdate-Intercalated Layered Double Hydroxides in the Oxidation of Styrene with Air

  • Nguyen Tien Thao
  • Nguyen Duc Trung
  • Dang Van Long


Molybdate anions were intercalated into the interlayer spacings of (Mg, Al) like-hydrotalcite compounds as interlayer compensating anions. The synthesized samples have been characterized by XRD, FT-IR, Raman, EDS, UV–vis, BET, and XPS. The solids possess lamellar structure and uniform platelet particles. There is mainly Mo(VI) present in both tetrahedral and octahedral configuration in the samples. All the synthesized catalysts have been tested for the liquid oxidation of styrene at mild conditions. Under reported conditions, styrene conversion varies with the total amount of molybdate ions. Benzaldehyde and styrene oxide were two major components in the product mixture. The selectivity to styrene oxide was found to be associated with the nature of oxidants and the amount of tetrahedrally-coordinated Mo species in layered double hydroxides while that to benzaldehyde is related to the overall amount of MoO4 anions in the sample.

Graphical Abstract

Product distribution obtained on Mg–Al–Molybdate like hydrotalcite catalysts in the liquid oxidation of styrene with air.


Molybdate Epoxidation Styrene Oxidation Hydrotalcite LDH 



This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant Number 104.05-2014.01.

Supplementary material

10562_2016_1710_MOESM1_ESM.doc (2.7 mb)
Supplementary material 1 (DOC 2802 kb)


  1. 1.
    Centi G, Cavani F, Trifiro F (2001) Selective oxidation by heterogeneous catalysis. Kluwer Academic Publishers, New YorkCrossRefGoogle Scholar
  2. 2.
    Dusi M, Mallat T, Baiker A (2000) Catal Rev-Sci Eng 42(1&2):213–287CrossRefGoogle Scholar
  3. 3.
    Monnier JR (2001) Appl Catal A 221:73–91CrossRefGoogle Scholar
  4. 4.
    Wang X, Zhang X, Wang Y, Liu H, Qiu J, Wang J, Han W, Yeung KL (2011) ACS Catal 1:437–445CrossRefGoogle Scholar
  5. 5.
    Qiu F, Wang X, Zhang X, Liu H, Liu S (2009) King Lun Yeung. Chem Eng J 147:316–322CrossRefGoogle Scholar
  6. 6.
    Laha SC, Kumar R (2001) J Catal 204:64–70CrossRefGoogle Scholar
  7. 7.
    Valand J, Parekh H (2013) H B Friedrich 40:153–157Google Scholar
  8. 8.
    Kishore D, Rodrigues AE (2008) Appl Catal A 345:104–111CrossRefGoogle Scholar
  9. 9.
    Tien-Thao N, Trung HH (2014) Catal Commun 45:153–157CrossRefGoogle Scholar
  10. 10.
    Wei X-L, Lu X-H, Ma X-T, Peng C, Jiang H-Z, Zhou D, Xia Q-H (2015) Catal Commun 61:48–52CrossRefGoogle Scholar
  11. 11.
    Nie L, Xin KK, Li WS, Zhou XP (2007) Catal Comm 8:488–492CrossRefGoogle Scholar
  12. 12.
    Bhattacharyya K, Varma S, Tripathi AK, Vinu A, Tyagi AK (2011) Chem A Eur J 17:12310–12325CrossRefGoogle Scholar
  13. 13.
    Lotero E, David V, Nguyen C, Wagner J, Larsen G (1998) Chem Mater 10:3756–3764CrossRefGoogle Scholar
  14. 14.
    Murata C, Yoshida H, Kumagai J, Hattori T (2003) J Phys Chem B 107:4364–4373CrossRefGoogle Scholar
  15. 15.
    Yang Q, Li C I, Yuan S, Li J, Ying P, Xin Q, Shi W (1999) J Catal 183:128–130CrossRefGoogle Scholar
  16. 16.
    Tang Q, Zhang Q, Hongli W, Wang Y (2005) J Catal 230:384–397CrossRefGoogle Scholar
  17. 17.
    Wang Y, Zhang Q, Shishido T, Takehira K (2002) J Catal 209:186–196CrossRefGoogle Scholar
  18. 18.
    Gomez S, Garces LJ, Villegas J, Ghosh R, Giraldo O, Siub SL (2005) J Catal 233:60–67CrossRefGoogle Scholar
  19. 19.
    Jana SK, Kubota Y, Tatsumi T (2007) J Catal 247:214–222CrossRefGoogle Scholar
  20. 20.
    Adam F, Iqbal A (2010) Chem Eng J 160:742–750CrossRefGoogle Scholar
  21. 21.
    Gardner E, Pinnavaia TJ (1998) Appl Catal A 167:65–74CrossRefGoogle Scholar
  22. 22.
    Maurya MR, Arya A, Adao P, Pessoa JC (2008) Appl Catal A 351:239–252CrossRefGoogle Scholar
  23. 23.
    Ciocan CE, Dumitriu E, Cacciaguerra T, Fajula F, Hule V (2012) Catal Today 198:239–245CrossRefGoogle Scholar
  24. 24.
    Behera GC, Parida KM (2013) Appl Catal A 464–465:364–373CrossRefGoogle Scholar
  25. 25.
    Valente AA, Petrovski Z, Branco LC, Afonso CAM, Pillinger M, Lopes AD, Romao CC, Nunes CD, Goncalves IS (2004) J Mol Catal A 218:5–11CrossRefGoogle Scholar
  26. 26.
    Zeng R-C, Liu Z-G, Zhang F, Li S-Q, Cui H-Z, Han E-H (2014) J Mater Chem A 2:13049–13057CrossRefGoogle Scholar
  27. 27.
    Kuhn FE, Groarke M, Bencze E, Herdtweck E, Prazeres A, Santos AM, Calhorda MJ, Romao CC, Goncalves IS, Lopes AD, Pillinger M (2002) Chem A Eur J 8:2370–2383CrossRefGoogle Scholar
  28. 28.
    Koch AKA, Borthakur R, Chakraborty M, De AK, Phukan A, Bez G, Lal RA (2014) J Mol Str 1063:92–101CrossRefGoogle Scholar
  29. 29.
    Lei X, Chelamalla N (2013) Polyhedron 49:244–251CrossRefGoogle Scholar
  30. 30.
    Mitchell S, Gomez-Aviles A, Gardner C, Jones W (2010) J Solid State Chem 183:198–207CrossRefGoogle Scholar
  31. 31.
    Vasant R Choudhary, Jayant R Indurkar, Vijay S Narkhede, Rani Jha (2004) J Catal 227:257–261Google Scholar
  32. 32.
    Frost RL, Musumeci AW, Bostrom T, Adebajo MO, Weier ML (2005) Thermochim Acta 429:179–187CrossRefGoogle Scholar
  33. 33.
    Zavoianu R, Bırjega R, Pavel OD, Cruceanu A, Alifanti M (2005) Appl Catal A 286:211–220CrossRefGoogle Scholar
  34. 34.
    Rives V (2001) Layered double hydroxides: present and future. Nova Science, New YorkGoogle Scholar
  35. 35.
    Barrio L (2008) Jose M Campos-Martin, M Pilar de Frutos and Jose L G Fierro. Ind Eng Chem Res 47:8016–8024CrossRefGoogle Scholar
  36. 36.
    Mitchell PCH, Wass SA (2002) Appl Catal A 225:153–165CrossRefGoogle Scholar
  37. 37.
    Frost RL, Musumeci AW, Martens WN, Adebajo MO, Bouzaid J (2005) J Raman Spectrosc 36:925–931CrossRefGoogle Scholar
  38. 38.
    Tien-Thao N, Huyen Le Thi K (2015) Chem Eng J 279:840–850Google Scholar
  39. 39.
    Mark A (1998) Drezdzon. Inorg Chem 27:4628–4632Google Scholar
  40. 40.
    Tyagil B, Sharma U, Jasra RV (2011) Appl Catal A 408:171–177CrossRefGoogle Scholar
  41. 41.
    Xiang Yu, Wang J, Zhang M, Yang P, Yang L, Cao D, Li J (2009) Solid State Sci 11:376–381CrossRefGoogle Scholar
  42. 42.
    Morrill MR, Tien-Thao N, Agrawal PK, Jones CW, Davis RJ, Shou H, Barton DG, Ferrari D (2012) Catal Lett 142:875–881CrossRefGoogle Scholar
  43. 43.
    Qian X, Jia G, Zhang J, Feng Z, Li C (2008) J Phys Chem C 112:9387–9393Google Scholar
  44. 44.
    Tian H, Wachs IE (2005) J Phys Chem B 109:23491–23499CrossRefGoogle Scholar
  45. 45.
    Spevach PA, McIntyre NS (1993) J Phys Chem 97:11020–11030CrossRefGoogle Scholar
  46. 46.
    Baltrusaitis J, Mendoza-Sanchez B, Fernandez V, Veenstra R, Dukstiene N, Roberts A, Fairley N (2015) Appl Surf Sci 326:151–161CrossRefGoogle Scholar
  47. 47.
    Kaliaguine S, Van Neste A, Szabo V, Gallot JE, Bassir M, Muzychuk R (2001) Appl Catal A 209:345–358CrossRefGoogle Scholar
  48. 48.
    Medina F, Dutartre R, Tichit D, Coq B, Dung NT, Salagre P, Sueiras JE (1997) J Mol Catal A 119:201–212CrossRefGoogle Scholar
  49. 49.
    A Alejandre, F Medina, P Salagre, X Correig, JE Sueiras (1999) Chem Mater 939–948Google Scholar
  50. 50.
    Wang Q, Tay HH, Guo Z, Chen L, Liu Y, Chang J, Zhong Z, Luo J, Borgna A (2012) Appl Clay Sci 55:18–26CrossRefGoogle Scholar
  51. 51.
    Di Cosimo JI, Dıez VK, Xu M, Iglesia E, Apestegui CR (1998) J Catal 178:499–510CrossRefGoogle Scholar
  52. 52.
    Kirm I, Medina F, Rodriguez X, Cesteros Y, Salagre P, Sueiras J (2004) Appl Catal A 272:175–185CrossRefGoogle Scholar
  53. 53.
    Mitchell JM, Finney NS (2001) J Am Chem Soc 123:862–869CrossRefGoogle Scholar
  54. 54.
    Fernandes CI, Capelli SC, Vaz PD, Nunes CD (2015) Appl Catal A 504:344–350CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Nguyen Tien Thao
    • 1
  • Nguyen Duc Trung
    • 1
  • Dang Van Long
    • 1
  1. 1.Faculty of ChemistryVietnam National University, HanoiHanoiVietnam

Personalised recommendations