Advertisement

Catalysis Letters

, Volume 146, Issue 4, pp 778–787 | Cite as

In situ DRIFTS Studies on Cu, Ni and CuNi catalysts for Ethanol Decomposition Reaction

  • Anand Kumar
  • Anchu Ashok
  • Rahul R. Bhosale
  • Mohd Ali H. Saleh
  • Fares A. Almomani
  • Mohammed Al-Marri
  • Mahmoud M. Khader
  • Faris Tarlochan
Article

Abstract

Catalyst nanopowders containing copper and nickel were synthesized using solution combustion synthesis method for hydrogen production from ethanol decomposition. Detailed in situ DRIFTS studies were conducted on three catalysts (Cu, Ni and CuNi) between 50 and 400 °C to identify the reaction pathways leading to differences in product selectivity over these catalysts. The catalysts nanopowders were characterized before and after reaction using various techniques (XRD, SEM and TEM) to understand the effect of reaction on catalytically active nanopowders. DRIFTS studies indicate that ethanol decomposition on Cu surface proceeds via acetaldehyde formation at low temperature (200–300 °C), generates ethyl acetate and carbon dioxide at 400 °C. Ni was more selective for methane and carbon monoxide. CuNi catalysts follows a trend similar to Cu catalyst at low temperature producing relatively more stable acetaldehyde intermediate that Ni, however at temperature above 300 °C, it behaves more like Ni catalyst producing only methane and carbon monoxide.

Graphical Abstract

Keywords

Solution combustion synthesis Ethanol hydrogen production DRIFTS Copper nickel catalysts 

Notes

Acknowledgments

This publication was made possible by JSREP Grant (JSREP-05-004-2-002) from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the author(s). The authors also wish to acknowledge the technical services granted by Central Laboratory Unit (CLU) and Gas Processing Centre (GPC) at Qatar University along with QU internal Grant (QUUG-CENG-CHE-14/15-9) to support this research.

Supplementary material

10562_2016_1706_MOESM1_ESM.docx (271 kb)
Supplementary material 1 (DOCX 270 kb)

References

  1. 1.
    Agrawal R, Offutt M, Ramage MP (2005) AIChE J 51:1582–1589CrossRefGoogle Scholar
  2. 2.
    Dunn S (2002) Int J Hydrogen Energy 27:235–264CrossRefGoogle Scholar
  3. 3.
    Nielsen SK, Karlsson K (2007) Int J Global Energy Issues 27:302–322CrossRefGoogle Scholar
  4. 4.
    Winter C, Nitsch J (2012) Hydrogen as an energy carrier: technologies, systems, economy. Springer, New YorkGoogle Scholar
  5. 5.
    Dutta S (2014) J Ind Eng Chem 20:1148–1156CrossRefGoogle Scholar
  6. 6.
    Eberle U, Müller B, von Helmolt R (2012) Energy Environ Sci 5:8780–8798CrossRefGoogle Scholar
  7. 7.
    Gurevich IG (2008) J Eng Phys Thermophys 81:6–16CrossRefGoogle Scholar
  8. 8.
    Trimm DL (2005) Appl Catal A Gen 296:1–11CrossRefGoogle Scholar
  9. 9.
    Balat M (2009) Energy Sources A 31:39–50CrossRefGoogle Scholar
  10. 10.
    Neelkanth GD, Rajani SB (2009) In: Gupta RB (ed) Hydrogen fuel: production, transport, and storage. CRC Press, Taylor & Francis Group, Boca RatonGoogle Scholar
  11. 11.
    Ryutaro H, Xing LY (2009) In: Gupta RB (ed) Hydrogen fuel: production, transport, and storage. CRC Press, Taylor & Francis Group, Boca RatonGoogle Scholar
  12. 12.
    Lin SY (2009) In: Gupta RB (ed) Hydrogen fuel: production, transport, and storage. CRC Press, Taylor & Francis Group, Boca RatonGoogle Scholar
  13. 13.
    Turner J, Sverdrup G, Mann MK, Maness PC, Kroposki B, Ghirardi M, Evans RJ, Blake D (2008) Int J Energy Res 32:379–407CrossRefGoogle Scholar
  14. 14.
    Dardor D, Bhosale RR, Gharbia S, Kumar A (2015) Al Momani F. J Emerg Trends Eng Appl Sci 6:129–135Google Scholar
  15. 15.
    Kumar A, Cross A, Manukyan K, Bhosale RR, van den Broeke LJP, Miller JT, Mukasyan AS, Wolf EE (2015) Chem Eng J 278:46–54CrossRefGoogle Scholar
  16. 16.
    Bhosale RR, Kumar A, van den Broeke LJP, Gharbia S, Dardor D, Jilani M, Folady J, Al-Fakih MS, Tarsad MA (2015) Int J Hydrog Energy 40:1639–1650CrossRefGoogle Scholar
  17. 17.
    Kumar A, Miller JT, Mukasyan AS, Wolf EE (2013) Appl Catal A Gen 467:593–603CrossRefGoogle Scholar
  18. 18.
    Carotenuto G, Kumar A, Miller J, Mukasyan A, Santacesaria E, Wolf E (2013) Catal Today 203:163–173CrossRefGoogle Scholar
  19. 19.
    Kumar A, Mukasyan A, Wolf E (2011) Appl Catal A Gen 401:20–28CrossRefGoogle Scholar
  20. 20.
    Kumar A, Mukasyan A, Wolf E (2010) Ind Eng Chem Res 49:11001–11008CrossRefGoogle Scholar
  21. 21.
    Kumar A, Mukasyan AS, Wolf EE (2010) Appl Catal A Gen 372:175–183CrossRefGoogle Scholar
  22. 22.
    Song H, Zhang L, Ozkan US (2012) Top Catal 55:1324–1331CrossRefGoogle Scholar
  23. 23.
    Mattos LV, Jacobs G, Davis BH, Noronha FB (2012) Chem Rev 112:4094–4123CrossRefGoogle Scholar
  24. 24.
    Barbaro P, Bianchini C (2009) In: Barbaro P, Bianchini C (eds) Catalysis for sustainable energy production. Wiley, Weinheim; ChichesterCrossRefGoogle Scholar
  25. 25.
    Song H, Tan B, Ozkan US (2009) Catal Lett 132:422–429CrossRefGoogle Scholar
  26. 26.
    Aden A (2008) Biochemical production of ethanol from corn stover: 2007 state of technology model. National Renewable Energy Laboratory, GoldenGoogle Scholar
  27. 27.
    Wang W, Wang Z, Ding Y, Xi J, Lu G (2002) Catal Lett 81:63–68CrossRefGoogle Scholar
  28. 28.
    Öhgren K, Rudolf A, Galbe M, Zacchi G (2006) Biomass Bioenergy 30:863–869CrossRefGoogle Scholar
  29. 29.
    Sun Y, Cheng J (2002) Bioresour Technol 83:1–11CrossRefGoogle Scholar
  30. 30.
    Haryanto A, Fernando S, Murali N, Adhikari S (2005) Energy Fuels 19:2098–2106CrossRefGoogle Scholar
  31. 31.
    Haga F, Nakajima T, Miya H, Mishima S (1997) Catal Lett 48:223–227CrossRefGoogle Scholar
  32. 32.
    Basagiannis Aristides C, Panagiotopoulou Paraskevi, Verykios Xenophon E (2008) Top Catal 51:2–12CrossRefGoogle Scholar
  33. 33.
    Yu W, Porosoff MD, Chen JG (2012) Chem Rev 112:5780–5817CrossRefGoogle Scholar
  34. 34.
    Lim B, Jiang M, Camargo PH, Cho EC, Tao J, Lu X, Zhu Y, Xia Y (2009) Science 324:1302–1305CrossRefGoogle Scholar
  35. 35.
    Zhang J, Wang H, Dalai AK (2007) J Catal 249:300–310CrossRefGoogle Scholar
  36. 36.
    Akdim O, Cai W, Fierro V, Provendier H, van Veen A, Shen W, Mirodatos C (2008) Top Catal 51:22–38CrossRefGoogle Scholar
  37. 37.
    Mariño F, Boveri M, Baronetti B, Laborde M (2004) Int J Hydrog Energy 29:67–71CrossRefGoogle Scholar
  38. 38.
    Rajesh H, Ozkan U (1993) Ind Eng Chem Res 32:1622–1630CrossRefGoogle Scholar
  39. 39.
    Iwasa N, Takezawa N (1991) Bull Chem Soc Jpn 64:2619–2623CrossRefGoogle Scholar
  40. 40.
    Cross A, Kumar A, Wolf EE, Mukasyan AS (2012) Ind Eng Chem Res 51:12004–12008CrossRefGoogle Scholar
  41. 41.
    Ashok A, Kumar A, Bhosale RR, Saleh MAH, van den Broeke LJP (2015) RSC Adv 5:28703–28712CrossRefGoogle Scholar
  42. 42.
    Kumar A, Wolf EE, Mukasyan AS (2010) AIChE J 57:2207–2214CrossRefGoogle Scholar
  43. 43.
    Kumar A, Wolf EE, Mukasyan AS (2011) AIChE J 57:3473–3479CrossRefGoogle Scholar
  44. 44.
    Baker RTK (1989) Carbon 27:315–323CrossRefGoogle Scholar
  45. 45.
    Mukasyan AS, Dinka P (2007) Adv Eng Mat 9:653–657CrossRefGoogle Scholar
  46. 46.
    Mariño FJ, Cerrella EG, Duhalde S, Jobbagy M, Laborde MA (1998) Int J Hydrog Energy 23:1095–1101CrossRefGoogle Scholar
  47. 47.
    Scott M, Goeffroy M, Chiu W, Blackford MA, Idriss H (2008) Top Catal 51:13–21CrossRefGoogle Scholar
  48. 48.
    Natal-Santiago MA, Dumesic JA (1998) J Catal 175:252–268CrossRefGoogle Scholar
  49. 49.
    Iwasita T, Pastor E (1994) Electrochim Acta 39:531–537CrossRefGoogle Scholar
  50. 50.
    Yu Z, Chuang SS (2007) J Catal 246:118–126CrossRefGoogle Scholar
  51. 51.
    Sutton JE, Panagiotopoulou P, Verykios XE, Vlachos DG (2013) J Phys Chem C 117:4691–4706CrossRefGoogle Scholar
  52. 52.
    Zanchet D, Santos JBO, Damyanova S, Gallo JMR, C. Bueno JM (2015) ACS Catal 5:3841–3863CrossRefGoogle Scholar
  53. 53.
    Walter K, Buyevskaya O, Wolf D, Baerns M (1994) Catal Lett 29:261–270CrossRefGoogle Scholar
  54. 54.
    Kazansky VB, Serykh AI, Pidko EA (2004) J Catal 225:369–373CrossRefGoogle Scholar
  55. 55.
    Errahali M, Gatti G, Tei L, Canti L, Fraccarollo A, Cossi M, Marchese L (2014) J Phys Chem C 118:10053–10060CrossRefGoogle Scholar
  56. 56.
    Tao F, Grass ME, Zhang Y, Butcher DR, Renzas JR, Liu Z, Chung JY, Mun BS, Salmeron M, Somorjai GA (2008) Science 322:932–934CrossRefGoogle Scholar
  57. 57.
    Cui C, Li H, Liu X, Gao M, Yu S (2012) ACS Catal 2:916–924CrossRefGoogle Scholar
  58. 58.
    Xin HL, Alayoglu S, Tao R, Genc A, Wang C, Kovarik L, Stach EA, Wang L, Salmeron M, Somorjai GA (2014) Nano Lett 14:3203–3207CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Anand Kumar
    • 1
  • Anchu Ashok
    • 2
  • Rahul R. Bhosale
    • 1
  • Mohd Ali H. Saleh
    • 1
  • Fares A. Almomani
    • 1
  • Mohammed Al-Marri
    • 1
    • 3
  • Mahmoud M. Khader
    • 3
  • Faris Tarlochan
    • 2
  1. 1.Department of Chemical EngineeringQatar UniversityDohaQatar
  2. 2.Department of Mechanical and Industrial EngineeringQatar UniversityDohaQatar
  3. 3.Gas Processing CenterQatar UniversityDohaQatar

Personalised recommendations