Catalysis Letters

, Volume 146, Issue 3, pp 692–700 | Cite as

The Role of Tungsten Oxide Species Supported on Titania Catalysts for the Synthesis of Glycerol Carbonate from Glycerol and Urea

  • K. Jagadeeswaraiah
  • Ch. Ramesh Kumar
  • A. Rajashekar
  • A. Srivani
  • N. Lingaiah


A series of WO3 supported on TiO2 catalysts were prepared by impregnation method with varying WO3 content. The prepared catalysts were characterized by FT-IR, Laser Raman, X-ray diffraction, BET surface area and temperature programmed desorption of NH3. X-ray diffraction and Laser Raman spectroscopic results suggest that WO3 was highly dispersed on titania up to 15 wt%. Acidity of the catalyst depended up on WO3 loading on titania and calcination temperature. The catalyst with 15 % WO3 content calcined at 500 °C exhibited high surface area and high acidity. Activity of the catalysts was evaluated for the synthesis of glycerol carbonate from glycerol and urea. The catalytic activity results showed that 15 % WO3 supported on TiO2 exhibited about 73 % glycerol conversion with near 100 % selectivity for glycerol carbonate. The influence of support on glycerol conversion was also studied and activities for different supports were in the order of TiO2 > SiO2 > MoO3 > Nb2O5 > ZrO2 > Al2O3. Different reaction parameters were also studied and optimum conditions were established. The catalyst is reusable without considerable loss in activity.

Graphical Abstract


Glycerol Glycerol carbonate Titania Tungsten oxide Urea 



The authors thank to Council of Scientific Industrial Research (CSIR), India for the financial support in the form of Indus magic (CSC-0123) Project under 12th Five Year Program.


  1. 1.
    Zheng Y, Chen X, Shen Y (2008) Chem Rev 108:5253–5277CrossRefGoogle Scholar
  2. 2.
    Balaraju M, Rekha V, Sai Prasad PS, Devi BLAP, Prasad RBN, Lingaiah N (2009) Appl Catal A 354:82–87CrossRefGoogle Scholar
  3. 3.
    Pachauri N, He B (2006) ASABE annual international meeting, Portland, Oregon 9–12 JulyGoogle Scholar
  4. 4.
    Pagliaro M, Ciriminna R, Kimura H, Rossi M, Pina CD (2007) Angew Chem Int Ed 46:4434–4440CrossRefGoogle Scholar
  5. 5.
    Pathak K, Reddy KM, Bakhshi NN, Dalai AK (2010) Appl Catal A 372:224–238CrossRefGoogle Scholar
  6. 6.
    Balaraju M, Rekha V, Devi BLAP, Prasad RBN, Prasad PSS, Lingaiah N (2010) Appl Catal A 384:107–114CrossRefGoogle Scholar
  7. 7.
    Behr A, Eilting J, Irawadi K, Leschinski J, Lindner F (2008) Green Chem 10:13–30CrossRefGoogle Scholar
  8. 8.
    Rokicki G, Rakoczy P, Parzuchowski P, Sobiecki M (2005) Green Chem 7:529–539CrossRefGoogle Scholar
  9. 9.
    Mei HJ, Zhong ZL, Long FF, Zhuo RX (2006) Macromol Rapid Commun 27:1894–1899CrossRefGoogle Scholar
  10. 10.
    Ubaghs L, Fricke N, Keul H, Hocker H (2004) Macromol Rapid Commun 25:517–521CrossRefGoogle Scholar
  11. 11.
    Simao AC, Pukleviciene BL, Rousseau C, Tatibouet A, Cassel S, Sackus A, Rauter AP, Rollin P (2006) Lett Org Chem 3:744–748CrossRefGoogle Scholar
  12. 12.
    Shaikh AG, Sivaram S (1996) Chem Rev 96:951–976CrossRefGoogle Scholar
  13. 13.
    Climent MJ, Corma A, Frutos P, Iborra S, Noy M, Velty A, Concepcion P (2010) J Catal 269:140–149CrossRefGoogle Scholar
  14. 14.
    Parka J-H, Choia JS, Wooa SK, Leea SD, Cheong M, Kimb HS, Leea H (2012) Appl Catal A 433–434:35–40CrossRefGoogle Scholar
  15. 15.
    Casiello M, Monopoli A, Cotugno P, Milella A, Dell’Anna MM, Ciminale F, Nacci A (2014) J Mol Catal A 381:99–106CrossRefGoogle Scholar
  16. 16.
    Lee KH, Park CH, Lee EY (2010) Bioprocess Biosyst Eng 33:1059–1065CrossRefGoogle Scholar
  17. 17.
    Kim SC, Kim YH, Lee H, Yoon DY, Song BK (2007) J Mol Catal B 49:75–78CrossRefGoogle Scholar
  18. 18.
    Pyo SH, Persson P, Lundmark S, Kaul RH (2011) Green Chem 13:976–982CrossRefGoogle Scholar
  19. 19.
    Seong PJ, Jeon BW, Lee M, Cho DH, Kim DK, Jung KS, Kim SW, Han SO, Kim YH, Park C (2011) Enzyme Microb Technol 48:505–509CrossRefGoogle Scholar
  20. 20.
    Li JB, Wang T (2011) J Chem Thermodyn 43:731–736CrossRefGoogle Scholar
  21. 21.
    Vieville C, Yoo JW, Pelet S, Mouloungui Z (1998) Catal Lett 56:245–247CrossRefGoogle Scholar
  22. 22.
    Sasa T, Okutsu M, Uno M (2009) JP Patent 2007-234982 2009067689Google Scholar
  23. 23.
    Yoo JW, Mouloungui Z (2003) Stud Surf Sci Catal 146:757–760CrossRefGoogle Scholar
  24. 24.
    Okutsu M, Kitsuki T (2000) WO Patent 2000-JP1072 2000050415Google Scholar
  25. 25.
    Okutsu M (2007) JP Patent 2005-222721 2010040768Google Scholar
  26. 26.
    Wang L, Ma Y, Wang Y, Liu S, Deng Y (2011) Catal Commun 12:1458–1462CrossRefGoogle Scholar
  27. 27.
    Hammond C, Sanchez JAL, Ab Rahim MH, Dimitratos N, Jenkins RL, Carley AF, He Q, Kiely CJ, Knight DW, Hutchings GJ (2011) Dalton Trans 40:3927–3937CrossRefGoogle Scholar
  28. 28.
    Marcos FR, Casilda VC, Banares MA, Fernandez JF (2010) J Catal 275:288–296CrossRefGoogle Scholar
  29. 29.
    Aresta M, Dibenedetto A, Nocito F, Ferragina C (2009) J Catal 268:106–114CrossRefGoogle Scholar
  30. 30.
    Ramesh Kumar Ch, Jagadeeswaraiah K, Sai Prasad PS, Lingaiah N (2012) ChemCatChem 4:1360–1367CrossRefGoogle Scholar
  31. 31.
    Jagadeeswaraiah K, Ramesh Kumar Ch, Sai Prasad PS, Lingaiah N (2014) Catal Sci Technol 4:2969–2977CrossRefGoogle Scholar
  32. 32.
    Jagadeeswaraiah K, Ramesh Kumar Ch, Sai Prasad PS, Loridant S, Lingaiah N (2014) Appl Catal A 469:165–172CrossRefGoogle Scholar
  33. 33.
    Turney TW, Patti A, Gates W, Shaheen U, Kulasegaram S (2013) Green Chem 15:1925–1931CrossRefGoogle Scholar
  34. 34.
    Narkhede N, Patel A (2015) RSC Adv 5:52801–52808CrossRefGoogle Scholar
  35. 35.
    Marakatti VS, Halgeri AB (2015) RSC Adv 5:14286–14293CrossRefGoogle Scholar
  36. 36.
    Indran VP, Zuhaimi NAS, Deraman MA, Maniam GP, Yusoff MM, Hin TYY, Rahim MHA (2014) RSC Adv 4:25257–25267CrossRefGoogle Scholar
  37. 37.
    Zuhaimi NAS, Indran VP, Deraman MA, Mudrikah NF, Maniam GP, Yap YHT, Rahim MHA (2015) Appl Catal A 502:312–319CrossRefGoogle Scholar
  38. 38.
    Kim DW, Park DW (2014) J Nanosci Nanotechnol 14:4632–4638CrossRefGoogle Scholar
  39. 39.
    Soung Kim D, Ostromecki M, Wachs IE (1996) J Mol Catal A 106:93–102CrossRefGoogle Scholar
  40. 40.
    Ramesh Kumar Ch, Sai Prasad PS, Lingaiah N (2011) J Mol Catal A 350:83–90CrossRefGoogle Scholar
  41. 41.
    Jiang YH, Sun YM, Zhao CX, Wu M, Yin HB, Chen KM (2007) New Chem Mater 35:28–30Google Scholar
  42. 42.
    Yang H, Shi R, Zhang K, Hu Y, Tang A, Li X (2005) J Alloy Compd 398:200–202CrossRefGoogle Scholar
  43. 43.
    Akurati KK, Vital A, Dellemann JP, Michalow K, Graule T, Ferri D, Baiker A (2008) Appl Catal B 79:53–62CrossRefGoogle Scholar
  44. 44.
    Kobayashi M, Miyoshi K (2007) Appl Catal B 72:253–261CrossRefGoogle Scholar
  45. 45.
    Martin C, Solana G, Rives V, Marci G, Palmisano L, Sclafani A (1997) Catal Lett 49:235–243CrossRefGoogle Scholar
  46. 46.
    Chen X, Mao SS (2007) Chem Rev 107:2891–2959CrossRefGoogle Scholar
  47. 47.
    Liu G, Wang X, Wang X, Han H, Li C (2012) J Catal 293:61–66CrossRefGoogle Scholar
  48. 48.
    Jin R, Xia X, Dai W, Deng JF, Li H (1999) Catal Lett 62:201–207CrossRefGoogle Scholar
  49. 49.
    Pae Y, Bae MH, Park WC, Sohn JR (2004) Bull Korean Chem Soc 25:1881–1888CrossRefGoogle Scholar
  50. 50.
    Vuurman MA, Wachs IE (1991) J Phys Chem 95:9928–9937CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • K. Jagadeeswaraiah
    • 1
  • Ch. Ramesh Kumar
    • 1
  • A. Rajashekar
    • 1
  • A. Srivani
    • 1
  • N. Lingaiah
    • 1
  1. 1.Catalysis Laboratory, Inorganic & Physical Chemistry DivisionCSIR–Indian Institute of Chemical TechnologyHyderabadIndia

Personalised recommendations