Catalysis Letters

, Volume 146, Issue 3, pp 587–595 | Cite as

A Recyclable Organocatalyst for Asymmetric Michael Addition

  • Mei Yang
  • Yuecheng Zhang
  • Jiquan Zhao
  • Qiusheng Yang
  • Yi Ma
  • Xiaohui Cao


In this study, a new organocatalyst derived from proline was developed and shown to be an efficient catalyst for asymmetric Michael addition reactions of ketones and aldehydes to nitroolefins with high diastereo- and enantioselectivities. (syn;anti up to 99:1, ee. up to 98 %.). Furthermore, the catalyst is easily recovered and could be reused six times without significant loss of its ability to affect the outcome of the asymmetric reactions. In addition, computational studies at the B3LYP/6-311G(d,p)//6-311 + G(2dp,f) level was conducted on a model reaction, and confirmed the following hypotheses: first, the hydrogen bonding between carboxyl group and nitro group plays an important role in catalysis, and second, the energy barrier for re-face attack in reactions of ketones to form 2S, 3R products is lower than that for the si-face attack leading to 2S, 3R products.

Graphical Abstract

Structural modification of a previously reported organocatalyst (lead compound in figure) was used to design an efficient and recyclable organocatalyst for asymmetric Michael addition. The introduced carboxyl group not only enhances the enantioselectivity but also brings convenience to the recovery of the catalyst.


Proline Asymmetric Michael addition Recyclable Computational studies 



This work was supported by Supported by National Natural Science Foundation of China (No. 21306038) and Natural Science Foundation of Hebei Province (No. B2013202216).

Supplementary material

10562_2016_1693_MOESM1_ESM.doc (1.9 mb)
Supplementary material 1 (DOC 1907 kb)


  1. 1.
    Dalko PI (2004) Angew Chem Int Ed 43:5138CrossRefGoogle Scholar
  2. 2.
    Guillena G, Ramon DJ (2006) Tetrahedron Asymmetry 17:1465CrossRefGoogle Scholar
  3. 3.
    Dalko PI (2007) Enantioselective rganocatalysis. Wiley, WeinheimCrossRefGoogle Scholar
  4. 4.
    List B (2007) Chem Rev 107:5413CrossRefGoogle Scholar
  5. 5.
    Rongming W, Linhai J, Dabin Q (2015) Tetrahedron Lett 56:2867CrossRefGoogle Scholar
  6. 6.
    Masanori Y, Yuki N, Ami K, Shoji H, Masahiro Y (2013) Tetrahedron 69:10003CrossRefGoogle Scholar
  7. 7.
    Clarke ML, Fuentes JA (2007) Angew Chem Int Ed 46:930CrossRefGoogle Scholar
  8. 8.
    Almaşi D, Alonso DA, Gómez-Bengoa E, Nagel Y, Nájera C (2007) Eur J Org Chem 2007:2328CrossRefGoogle Scholar
  9. 9.
    Diez D, Gil MJ, Moro RF, Marcos IS, García P, Basabe P, Garrido NM, Broughton HB, Urones JG (2007) Tetrahedron 63:740CrossRefGoogle Scholar
  10. 10.
    Lu A, Wu R, Wang Y, Zhou Z, Wu G, Fang J, Tang C (2011) Eur J Org Chem 122:3507Google Scholar
  11. 11.
    Berner OM, Tedeschi L, Enders D (2002) Eur J Org Chem 12:1877CrossRefGoogle Scholar
  12. 12.
    Krause N, Hoffmann-Röder A (2001) Synthesis 1:171CrossRefGoogle Scholar
  13. 13.
    Tsogoeva SB (2007) Eur J Org Chem 11:1701CrossRefGoogle Scholar
  14. 14.
    Almasi D, Alonso DA, Nájera C (2007) Tetrahedron Asymmetry 18:299CrossRefGoogle Scholar
  15. 15.
    Cao CL, Ye MC, Sun XL, Tang Y (2006) Org Lett 8:2901CrossRefGoogle Scholar
  16. 16.
    Freund M, Schenker S, Tsogoeva SB (2009) Org Biomol Chem 7:4279CrossRefGoogle Scholar
  17. 17.
    Zu L, Wang J, Li H, Wang W (2006) Org Lett 8:3077CrossRefGoogle Scholar
  18. 18.
    Lu AD, Gao P, Wu Y, Wang YM, Zhou ZH, Tang CC (2009) Org Biomol Chem 7:3141CrossRefGoogle Scholar
  19. 19.
    Wang J, Li H, Lou B, Zu L, Guo H, Wang W (2006) Chem Eur J 12:4321CrossRefGoogle Scholar
  20. 20.
    Lu A, Wu R, Wang Y, Zhou Z, Wu G, Fang J, Tang C (2010) Eur J Org Chem 2010:2057CrossRefGoogle Scholar
  21. 21.
    Chen JR, Lai YY, Lu HH, Wang XF (2009) Tetrahedron 65:9238CrossRefGoogle Scholar
  22. 22.
    Cao YJ, Lu HH, Lai YY, Lu LQ, Xiao WJ (2006) Synthesis 22:3795Google Scholar
  23. 23.
    List B, Pojarliev P, Martin HJ (2001) Org Lett 3:2423CrossRefGoogle Scholar
  24. 24.
    Betancort JM, Barbas CF III (2001) Org Lett 3:3737CrossRefGoogle Scholar
  25. 25.
    Enders D, Seki A (2002) Synlett 1:26CrossRefGoogle Scholar
  26. 26.
    Ishii T, Fujioka S, Sekiguchi Y, Kotsuki H (2004) J Am Chem Soc 126:9558CrossRefGoogle Scholar
  27. 27.
    Mase N, Thayumanavan R, Tanaka F, Barbas CFIII (2004) Org Lett 6:2527CrossRefGoogle Scholar
  28. 28.
    Betancort JM, Sakthivel K, Thayumanavan R, Tanaka F, Barbas CFIII (2004) Synthesis 9:1509Google Scholar
  29. 29.
    Alexakis A, Andrey O (2002) Org Lett 4:3611CrossRefGoogle Scholar
  30. 30.
    Andrey O, Alexakis A, Tomassini A, Bernardinelli G (2004) Adv Synth Catal 346:1147CrossRefGoogle Scholar
  31. 31.
    Cobb AJA, Longbottom DA, Shaw DM, Ley SV (2004) Chem Commun 16:1808CrossRefGoogle Scholar
  32. 32.
    Cobb AJA, Shaw DM, Longbottom DA, Gold JB, Ley SV (2005) Org Biomol Chem 3:84CrossRefGoogle Scholar
  33. 33.
    Reyes E, Vicario JL, Badia D, Carrillo L (2006) Org Lett 8:6135CrossRefGoogle Scholar
  34. 34.
    Wang W, Wang J, Li H (2005) Angew Chem Int Ed 44:1369CrossRefGoogle Scholar
  35. 35.
    Pansare SV, Pandya K (2006) J Am Chem Soc 128:9624CrossRefGoogle Scholar
  36. 36.
    Mase N, Watanabe K, Yoda H, Takabe K, Tanaka F, Barbas CFIII (2006) J Am Chem Soc 128:4966CrossRefGoogle Scholar
  37. 37.
    Vishnumaya, Singh VK (2007) Org Lett 9:1117CrossRefGoogle Scholar
  38. 38.
    Gua L, Zhao G (2007) Adv Synth Catal 349:1629CrossRefGoogle Scholar
  39. 39.
    Ni B, Zhang Q, Headley AD (2007) Tetrahedron Asymmetry 18:1443CrossRefGoogle Scholar
  40. 40.
    Xu DQ, Wang LP, Luo SP, Wang YF, Zhang S, Xu ZY (2008) Eur J Org Chem 6:1049CrossRefGoogle Scholar
  41. 41.
    Bukuo N, Zhang QY, Kritanjali D, Allan DH (2009) Org Lett 11:1037CrossRefGoogle Scholar
  42. 42.
    Diana A, Diego AA, Enrique GB, Yvonne N, Carmen N (2007) Eur J Org Chem 14:2328Google Scholar
  43. 43.
    Terakado D, Takano M, Oriyama T (2005) Chem Lett 34:962CrossRefGoogle Scholar
  44. 44.
    Wang L, Liu J, Miao T, Zhou W, Li P, Ren K, Zhang X (2010) Adv Synth Catal 352:1629Google Scholar
  45. 45.
    Zh W, Lu CF, Ch Yang G, Chen ZX, Nie JQ (2015) Catal Commun 62:34CrossRefGoogle Scholar
  46. 46.
    Han Y, Mouming L, Sheng H (2014) Tetrahedron 70:8380CrossRefGoogle Scholar
  47. 47.
    Cao YJ, Lai YY, Wang X, Li YJ, Xiao WJ (2007) Tetrahedron Lett 48:21CrossRefGoogle Scholar
  48. 48.
    Ni B, Zhang Q, Headley AD (2007) Green Chem 9:737CrossRefGoogle Scholar
  49. 49.
    Zhang Q, Ni B, Headley AD (2008) Tetrahedron 64:5091CrossRefGoogle Scholar
  50. 50.
    Wu LY, Yan ZY, Xie YX, Niu YN, Liang YM (2007) Tetradedron Asymmetry 18:2086CrossRefGoogle Scholar
  51. 51.
    Luo S, Mi X, Zhang L, Liu S, Xu H, Cheng JP (2006) Angew Chem Int Ed 45:3093CrossRefGoogle Scholar
  52. 52.
    Alza E, Cambeiro XC, Jimeno C, Pericàs MA (2007) Org Lett 9:3717CrossRefGoogle Scholar
  53. 53.
    Wang B-G, Ma B-C, Wang Q, Wang W (2010) Adv Synth Catal 352:2923CrossRefGoogle Scholar
  54. 54.
    Zheng Z, Perkins BL, Ni B (2010) J Am Chem Soc 132:50CrossRefGoogle Scholar
  55. 55.
    Xin H, Wen-Bin Y, Danash A, Wei Z (2013) Tetrahedron Lett 54:6064CrossRefGoogle Scholar
  56. 56.
    Xuefei Q, Jun T, Yang L, Ligong Ch, Xilong Y (2015) Catal Commun 71:70CrossRefGoogle Scholar
  57. 57.
    Cao X, Wang G, Zhang R, Wei Y, Wang W, Sun H, Chen L (2011) Org Biomol Chem 9:6487CrossRefGoogle Scholar
  58. 58.
    Gaussian 09, Revision D.01, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr., Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2013) Gaussian, Inc., Wallingford CTGoogle Scholar
  59. 59.
    Becke AD (1993) J Chem Phys 98:1372CrossRefGoogle Scholar
  60. 60.
    Becke AD (1993) J Chem Phys 98:5648CrossRefGoogle Scholar
  61. 61.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785CrossRefGoogle Scholar
  62. 62.
    Gonzalez C, Schlegel HB (1990) J Phys Chem 94:5523CrossRefGoogle Scholar
  63. 63.
    Knudsen RK, Mitchell CET, Ley SV (2006) Chem Commun 1:66CrossRefGoogle Scholar
  64. 64.
    Tang Z, Yang Z, Chen X, Cun L, Mi A, Jiang Y, Gong L (2005) J Am Chem Soc 127:9285CrossRefGoogle Scholar
  65. 65.
    Martin HJ, List B (2003) Synlett 12:1901Google Scholar
  66. 66.
    Lu D, Gong Y, Wang W (2010) Adv Synth Catal 352:644CrossRefGoogle Scholar
  67. 67.
    Asami M (1990) Bull Chem Sc Jpn 63:721CrossRefGoogle Scholar
  68. 68.
    Carter ME, Nash JL Jr, Drueke JW Jr, Schwietert JW, Butler GB (1978) J Polym Sci Polym Chem Ed 16:937CrossRefGoogle Scholar
  69. 69.
    Mase N, Tanaka F, Barbas CFIII (2003) Org Lett 5:4369CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Mei Yang
    • 1
  • Yuecheng Zhang
    • 1
  • Jiquan Zhao
    • 1
  • Qiusheng Yang
    • 1
  • Yi Ma
    • 2
  • Xiaohui Cao
    • 1
  1. 1.School of Chemical Engineering and TechnologyHebei University of TechnologyTianjinChina
  2. 2.National Key Laboratory of Elemento-Organic ChemistryNankai UniversityTianjinChina

Personalised recommendations