Catalysis Letters

, Volume 146, Issue 1, pp 126–135 | Cite as

Insights into the Reaction Mechanism of Cyclohexane Oxidation Catalysed by Molybdenum Blue Nanorings

  • Marco Conte
  • Xi Liu
  • Damien M. Murphy
  • Stuart H. Taylor
  • Keith Whiston
  • Graham J. Hutchings


Molybdenum blue (MB), is a polyoxometalate with a nanoring structure comprising Mo5+–O–Mo6+ bridges, which is active for the catalytic oxidation of cyclohexane to cyclohexanol and cyclohexanone. However, little is known about the mechanistic features responsible of this catalytic activity. In the present work, the Mo5+–O–Mo6+ moieties embedded in the MB nanoring structure were characterized using diffuse reflectance-UV–Visible spectroscopy and solid state EPR spectroscopy. The amount of Mo5+ centres was then varied by thermal treatment of the polyoxometalate in the absence of oxygen, and the resultant effect on the catalytic activity was investigated. It was observed that, an increased amount of Mo5+ centres preserved the conversion of cyclohexane (ca. 6 %) but led to a loss of selectivity to cyclohexanol giving cyclohexanone as the major product, and the simultaneous formation of adipic acid. To rationalise these results the catalysts were studied using EPR spin trapping to investigate the decomposition of cyclohexyl hydroperoxide (CHHP), a key intermediate in the oxidation process of cyclohexane. This analysis showed that CHHP has to be bound to the MB surface in order to explain its catalytic activity and product distribution.

Graphical Abstract


Molybdenum blue Cyclohexane oxidation DR-UV–Vis spectroscopy EPR spectroscopy 



The authors wish to acknowledge the support of INVISTA Textiles (UK) Limited, INVISTA Intermediates and INVISTA Technologies S. à r. l.


  1. 1.
    He Z, Honeycutt C (2005) Commun Soil Sci Plan 36:1373CrossRefGoogle Scholar
  2. 2.
    Deng SP, Tabatabai MA (1994) Soil Biol Biochem 26:473CrossRefGoogle Scholar
  3. 3.
    Müller A, Meyer J, Krickemeyer E, Diemann E (1996) Angew Chem Int Ed 35:1206CrossRefGoogle Scholar
  4. 4.
    Müller A, Serain C (2000) Acc Chem Res 33:2CrossRefGoogle Scholar
  5. 5.
    Xuan W, Surman AJ, Miras HN, Long DL, Cronin L (2014) J Am Chem Soc 136:14114CrossRefGoogle Scholar
  6. 6.
    Long DL, Tsunashima R, Cronin L (2010) Angew Chem Int Ed 49:1736CrossRefGoogle Scholar
  7. 7.
    Miras HM, Richmond CJ, Long DL, Cronin L (2012) J Am Chem Soc 134:3816CrossRefGoogle Scholar
  8. 8.
    Zhong D, Sousa FL, Müller A, Chi L, Fuchs H (2011) Angew Chem Int Ed 50:7018CrossRefGoogle Scholar
  9. 9.
    Liu X, Conte M, Weng W, He Q, Jenkins RL, Watanabe M, Knight DW, Murphy DM, Whiston K, Kiely CJ, Hutchings GJ (2015) Catal Sci Technol 5:217CrossRefGoogle Scholar
  10. 10.
    Vanoppen DL, De Vos DE, Genet MJ, Rouxhet PG, Jacobs PA (1995) Angew Chem Int Ed 34:560CrossRefGoogle Scholar
  11. 11.
    Guo CC, Chu MF, Liu Q, Liu Y, Guo DC, Liu XQ (2003) Appl Catal A 246:303CrossRefGoogle Scholar
  12. 12.
    Kumar R, Sithambaram S, Suib SL (2009) J Catal 262:304CrossRefGoogle Scholar
  13. 13.
    Dapurkar SE, Sakthivel A, Selvam P (2004) J Mol Catal A 223:241CrossRefGoogle Scholar
  14. 14.
    Hereijgers BPC, Weckhuysen BM (2010) J Catal 270:16CrossRefGoogle Scholar
  15. 15.
    Ressler T, Walter A, Huang ZD, Bensch W (2008) J Catal 254:170CrossRefGoogle Scholar
  16. 16.
    Conte M, Chechik V (2010) Chem Commun 46:3991CrossRefGoogle Scholar
  17. 17.
    Langhals H (2000) Spectrochim Acta A 56:2207CrossRefGoogle Scholar
  18. 18.
    Leandri R (2001) J. Chemometrics 15:559CrossRefGoogle Scholar
  19. 19.
    Alper JS, Gelb RI (1990) J Phys Chem 94:4741Google Scholar
  20. 20.
    Simulations were carried out using WinSim software:
  21. 21.
    Conte M, Ma Y, Loyns C, Price P, Rippon D, Chechik V (2009) Org Biomol Chem 7:2685CrossRefGoogle Scholar
  22. 22.
    Walling C, Buckler SA (1955) J Am Chem Soc 77:6032CrossRefGoogle Scholar
  23. 23.
    Labanowska M (1999) Phys Chem Chem Phys 1:5385CrossRefGoogle Scholar
  24. 24.
    Qiu H, Xu T, Wang Z, Ren W, Nan H, Ni Z, Chen Q, Yuan S, Miao F, Song F, Long G, Shi Y, Sun L, Wang J, Wang X (2013) Nat Commun 4:2642Google Scholar
  25. 25.
    Dyrek K, Che M (1997) Chem Rev 97:305CrossRefGoogle Scholar
  26. 26.
    Bugayev AA, Nikitin SE (2000) Opt Commun 180:69CrossRefGoogle Scholar
  27. 27.
    Glover SD, Kubiak CP (2011) J Am Chem Soc 133:8721CrossRefGoogle Scholar
  28. 28.
    Brunschwig BS, Creutz C, Sutin N (2000) Chem Soc Rev 31:168CrossRefGoogle Scholar
  29. 29.
    Canzi G, Goeltz JC, Henderson JS, Park RE, Maruggi C, Kubiak CP (2014) J Am Chem Soc 136:1710CrossRefGoogle Scholar
  30. 30.
    Chithambararaj A, Sanjini NS, Velmathi S, Bose AC (2013) Phys Chem Chem Phys 15:14761CrossRefGoogle Scholar
  31. 31.
    Hussain Z (2001) J Mater Res 16:2695CrossRefGoogle Scholar
  32. 32.
    Uemura T, Ohba M, Kitagawa S (2004) Inorg Chem 43:7339CrossRefGoogle Scholar
  33. 33.
    He T, Yao J (2003) J Photochem Photobiol C 4:125CrossRefGoogle Scholar
  34. 34.
    Chudnovskii FA, Schaefer DM, Gavrilyuk AI, Reifenberger R (1992) Appl Surf Sci 62:145CrossRefGoogle Scholar
  35. 35.
    Ganduglia-Pirovano MV, Hofmann A, Sauer J (2007) Surf Sci Rep 62:219CrossRefGoogle Scholar
  36. 36.
    Torok B, Torok M, Rozsa-Tarjani M, Palinko I, Horvath LI, Kiricsi I, Molnar A (2000) Inorg Chim Acta 298:77CrossRefGoogle Scholar
  37. 37.
    Catoire B (ed) (1992) Electron spin resonance (ESR) applications in organic and bioorganic materials. Springer, Berlin, p 190Google Scholar
  38. 38.
    Berliner L (ed) (2003) In Vivo EPR (ESR): Theory and Application in Biologic Magnetic resonance. Kluwr/Plenum publishers, New York, p 442Google Scholar
  39. 39.
    Chiesa M, Giamello E, Che M (2010) Chem Rev 110:1320CrossRefGoogle Scholar
  40. 40.
    Liu X, Ryabenkova Y, Conte M (2015) Phys Chem Chem Phys 17:715CrossRefGoogle Scholar
  41. 41.
    Partenheimer W (1995) Catal Today 23:69CrossRefGoogle Scholar
  42. 42.
    Hermans I, Jacobs PA, Peeters J (2006) Chem Eur J 12:4229CrossRefGoogle Scholar
  43. 43.
    Weinstein J, Bielski BHJ (1979) J Am Chem Soc 101:58CrossRefGoogle Scholar
  44. 44.
    Tanase S, Bouwman E, Reedijk J (2004) Appl Catal A 259:101CrossRefGoogle Scholar
  45. 45.
    Ramanathan A, Hamdy MS, Parton R, Maschmeyer T, Jansen JC, Hanefeld U (2009) Appl Catal A 355:78CrossRefGoogle Scholar
  46. 46.
    Hmady MS, Ramanathan A, Maschmeyer T, Hanefled U, Jansen JC (2006) Chem Eur J 12:1782CrossRefGoogle Scholar
  47. 47.
    Conte M, Miyamura H, Kobayashi S, Chechik V (2009) J Am Chem Soc 131:7189CrossRefGoogle Scholar
  48. 48.
    Conte M, Wilson K, Chechik V (2007) Org Biomol Chem 7:1361CrossRefGoogle Scholar
  49. 49.
    Novak M, Brodeur BA (1984) J Org Chem 49:1142CrossRefGoogle Scholar
  50. 50.
    Baum SL, Anderson IGM, Baker RR, Murphy DM, Rowlands CC (2003) Anal Chim Acta 481:1CrossRefGoogle Scholar
  51. 51.
    Davies MJ, Slater TF (1986) Biochem J 240:789CrossRefGoogle Scholar
  52. 52.
    Janzen EG, Evans CA, Liu JP (1973) J Magn Reson 9:513Google Scholar
  53. 53.
    Conte M, Wilson K, Chechik V (2010) Rev Sci Instrum 81:104102CrossRefGoogle Scholar
  54. 54.
    Ionita P, Conte M, Gilbert BC, Chechik V (2007) Org Biomol Chem 5:3504CrossRefGoogle Scholar
  55. 55.
    Conte M, Liu X, Murphy DM, Whiston K, Hutchings GJ (2012) Phys Chem Chem Phys 14:16279CrossRefGoogle Scholar
  56. 56.
    Silke EJ, Pitz WJ, Westbrook CK, Ribaucour M (2007) J Phys Chem A 111:3761CrossRefGoogle Scholar
  57. 57.
    Lee SO, Raja R, Harris KDM, Thomas JM, Brian BFG, Sankar G (2003) Angew Chem Int Ed 42:1520CrossRefGoogle Scholar
  58. 58.
    Jensen RK, Korcek S, Mahoney LR, Zinbo M (1981) J Am Chem Soc 103:1742CrossRefGoogle Scholar
  59. 59.
    Modén B, Zhan BZ, Dakka J, Santiesteban JG, Iglesia E (2006) J Catal 239:390CrossRefGoogle Scholar
  60. 60.
    Stark MS (2002) J Am Chem Soc 122:4162CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Marco Conte
    • 1
    • 2
  • Xi Liu
    • 1
  • Damien M. Murphy
    • 1
  • Stuart H. Taylor
    • 1
  • Keith Whiston
    • 3
  • Graham J. Hutchings
    • 1
  1. 1.Cardiff Catalysis Institute, School of ChemistryCardiff UniversityCardiffUK
  2. 2.Department of Chemistry, Dainton BuildingUniversity of SheffieldSheffieldUK
  3. 3.INVISTA Textiles (UK) LimitedRedcarUK

Personalised recommendations