Catalysis Letters

, Volume 146, Issue 2, pp 364–372 | Cite as

Efficient Solvent Free Knoevenagel Condensation Over Vanadium Containing Heteropolyacid Catalysts

  • Balaga Viswanadham
  • Pedada Jhansi
  • Komandur V. R. Chary
  • Holger B. Friedrich
  • Sooboo Singh


Various V/P mole ratios of vanadium substituted Keggin-type phosphomolybdic acids were synthesized by the hydrothermal method. These materials were characterized using several physico-chemical techniques such as X-ray diffraction, FT-IR, N2-sorption, Raman spectroscopy, 31P MAS NMR, SEM and NH3-TPD. FT-IR, Raman spectroscopy and 31P NMR results confirm the formation of the primary structure of the Keggin ion and its crystalline nature is shown clearly by XRD. NH3-TPD results reveal that the acidity of the materials systematically decreases with increasing vanadium content. The Knoevenagel reaction carried out over vanadium substituted phosphomolybdic acid with various V/P mole ratios indicate that the higher V/P mole ratio exhibits better catalytic performance under solvent free conditions. The catalytic properties correlate with the structural properties and the acidity of the materials.

Graphical Abstract


Vanadium-substituted phosphomolybdic acid Knoevenagel reaction Solvent free reaction Acidity 



B Viswanadham thanks to the University of KwaZulu-Natal for the award of the AES Postdoctoral Research Fellowship.


  1. 1.
    Trost BM (1991) Comprehensive organic synthesis. Elsevier, Oxford, p 133Google Scholar
  2. 2.
    Knoevenagel L (1898) Ber 31:258Google Scholar
  3. 3.
    Enders D, Muller S, Demir AS (1988) Tetrahedron Lett 29:6437CrossRefGoogle Scholar
  4. 4.
    Reeves RL, Patai S (1996) The chemistry of carbonyl compounds. Interscience Publishers, New York 567 Google Scholar
  5. 5.
    Jones G (1967) Org React 15:204Google Scholar
  6. 6.
    Attanasi O, Fillippone P, Mei A (1983) Syn Commun 13:1203CrossRefGoogle Scholar
  7. 7.
    Shanthan Rao P, Venkatratnam RV (1991) Tetrahedron Lett 32:5821CrossRefGoogle Scholar
  8. 8.
    Bao W, Zhang Y, Wang J (1996) Syn Commun 26:3025CrossRefGoogle Scholar
  9. 9.
    Saravanamurugan S (2006) Appl Catal A Gen 298:8CrossRefGoogle Scholar
  10. 10.
    Boullet FT, Focucad A (1982) Tetrahedron Lett 23:4927CrossRefGoogle Scholar
  11. 11.
    Macquarrie DJ, Clark JH, Lambert A, Gmode JE, Priest A (1997) React Funct Polym 35:153CrossRefGoogle Scholar
  12. 12.
    Brunel D (1993) Micropor Mesopor Mater 27:329CrossRefGoogle Scholar
  13. 13.
    Hein RW, Astle MJ, Shelton JR (1961) J Org Chem 26:4874CrossRefGoogle Scholar
  14. 14.
    Moison H, Boullet FT, Focaud A (1987) Tetrahedron 43:537CrossRefGoogle Scholar
  15. 15.
    Bigi F, Chesini L, Maggi R, Sartori G (1999) J Org Chem 64:1033CrossRefGoogle Scholar
  16. 16.
    Kantam ML, Choudary BM, Reddy CV, Rao KK, Figueras F (1998) Chem Commun 1033Google Scholar
  17. 17.
    Joshi UD, Joshi PN, Tamhankar SS, Joshi VV, Rode CV, Shiralkar VP (2003) Appl Catal A Gen 239:209CrossRefGoogle Scholar
  18. 18.
    Climent MJ, Corma A, Forens V, Frau A, Lopez RG, Iborra S, Primo J (1996) J Catal 163:392CrossRefGoogle Scholar
  19. 19.
    Corma A, Fornes V, Aranda RMM, Garcia H, Primo J (1990) Appl Catal 59:237CrossRefGoogle Scholar
  20. 20.
    Corma A, Aranda RMM, Sanchez F, Guinst M, Barrault J, Bouchoule C, Duprez D, Maurel R, Montassier C (1991) Stud Surf Sci Catal 62:503CrossRefGoogle Scholar
  21. 21.
    Corma A, Aranda RMM (1993) Appl Catal A 105:271CrossRefGoogle Scholar
  22. 22.
    Oskooie HA, Heravi MM, Derikvand F, Khorasani M (2006) Syn Commu 36:2819CrossRefGoogle Scholar
  23. 23.
    Bhunia S, Saha D, Koner S (2011) Langmuir 27:15322CrossRefGoogle Scholar
  24. 24.
    Metzger JO (1998) Ang Chem Inter Ed 37:2975CrossRefGoogle Scholar
  25. 25.
    Tanaka K, Toda F (2000) Chem Rev 100:1025CrossRefGoogle Scholar
  26. 26.
    Pillai MK, Singh S, Jonnalagadda SB (2011) Kinet Catal 52:536CrossRefGoogle Scholar
  27. 27.
    Fumin Z, Maiping G, Hanqing G, Jun W (2007) Front Chem Eng China 1:296CrossRefGoogle Scholar
  28. 28.
    Sen R, Bera R, Ashis B, Gutlich P, Ghosh S, Mukherjee AK, Koner S (2008) Langmuir 24:5970CrossRefGoogle Scholar
  29. 29.
    Ilkenhans T, Herzag B, Braun T, Schlogl R (1995) J Catal 153:275CrossRefGoogle Scholar
  30. 30.
    Zhang J, Tang Y, Li G, Hu C (2005) Appl Catal A Gen 278:251CrossRefGoogle Scholar
  31. 31.
    Predoeva A, Damyanova S, Gaigneaux EM, Petrov L (2007) Appl Catal A Gen 319:14CrossRefGoogle Scholar
  32. 32.
    Raj NKK, Deshpande SS, Ingle RH, Raja T, Manikandan P (2004) Catal Lett 24:1001Google Scholar
  33. 33.
    Yue ZY, Bao B, Liu RL, Xi HS, Yong H (2006) Chin J Chem 24:1001CrossRefGoogle Scholar
  34. 34.
    Tang Y, Zhang J (2006) J Serb Chem Soc 71:111CrossRefGoogle Scholar
  35. 35.
    Ogiwara Y, Takahashi K, Kitazawa T, Sakai N (2015) J Org Chem 80:3101CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Balaga Viswanadham
    • 1
  • Pedada Jhansi
    • 1
  • Komandur V. R. Chary
    • 2
  • Holger B. Friedrich
    • 1
  • Sooboo Singh
    • 1
  1. 1.Catalysis Research Group, School of Chemistry and PhysicsUniversity of KwaZulu-NatalDurbanSouth Africa
  2. 2.Catalysis DivisionIndian Institute of Chemical TechnologyHyderabadIndia

Personalised recommendations