Catalysis Letters

, Volume 145, Issue 11, pp 1948–1954 | Cite as

Cluster Size Dependent Kinetics: Analysis of Different Reaction Mechanisms

  • Dmitry Yu. Murzin


Quantitative description for turnover frequency dependence on the metal cluster size is discussed for competitive Langmuir–Hinshelwood mechanism showing that the apparent reaction orders depend on the cluster size. Position of the maximum rate of the turnover frequency for a two-step sequence is a function on temperature and only in a special case, maximum of the turnover frequency is temperature independent on reaction temperature. For the same reaction mechanism the impact of internal diffusion limitations on structure sensitivity is discussed.

Graphical Abstract


Structure sensitivity Kinetic analysis Temperature dependence Optimum cluster size Langmuir–Hinshelwood kinetics Eley–Rideal mechanism Two step sequence 



This work was partially executed at the Laboratory of Catalytic Technologies at St. Petersburg State Institute of Technology supported by the mega-grant of the Government of the Russian Federation.


  1. 1.
    van Hardeveld R, Hartog F (1969) Surf Sci 15:189CrossRefGoogle Scholar
  2. 2.
    Bell AT (2003) Science 299:1688CrossRefGoogle Scholar
  3. 3.
    Schlögl R, Abd SB (2004) Hamid. Angew Chem Int Ed 43:1628CrossRefGoogle Scholar
  4. 4.
    Narayanan R, El-Sayed MA (2008) Top Catal 47:15CrossRefGoogle Scholar
  5. 5.
    Klasovsky F, Claus P (2008) In: Corain B, Schmid G, Toshima N (eds) Metal nanoclusters in catalysis and materials science: the issue of size control. Elsevier, Amsterdam, pp 167–181CrossRefGoogle Scholar
  6. 6.
    Santen RA (2009) Acc Chem Res 42:57CrossRefGoogle Scholar
  7. 7.
    Che M, Bennett CO (1989) Adv Catal 36:55Google Scholar
  8. 8.
    Henry CR (2000) Appl Surf Sci 164:252CrossRefGoogle Scholar
  9. 9.
    Boudart M (1969) Adv Catal 20:153Google Scholar
  10. 10.
    Murzin DYu (2012) Catal Lett 142:1279CrossRefGoogle Scholar
  11. 11.
    Murzin DYu (2009) Chem Eng Sci 64:64CrossRefGoogle Scholar
  12. 12.
    Murzin DYu (2010) J Mol Catal A 315:226CrossRefGoogle Scholar
  13. 13.
    Murzin DYu, Parmon VN (2011) Catal-Spec Period Rep, RSC 23:179Google Scholar
  14. 14.
    Parmon VN (2007) Dokl Phys Chem 413:42CrossRefGoogle Scholar
  15. 15.
    Murzin DYu (2010) J Catal 276:85CrossRefGoogle Scholar
  16. 16.
    Simakova O, Kusema B, Campo B, Leino A-R, Kordas K, Pitchon V, Mäki-Arvela P, Murzin DYu (1036) J Phys Chem C 2011:115Google Scholar
  17. 17.
    Simakova OA, Murzina EV, Murzin DYu (2014) C R Chim 17:770CrossRefGoogle Scholar
  18. 18.
    Aho A, Roggan S, Simakova O, Salmi T, Murzin DYu (2015) Catal Today 241:195CrossRefGoogle Scholar
  19. 19.
    Baeza JA, Calvo L, Murzin DYu, Rodriguez JJ, Gillaranz MA (2014) Catal Lett 144:2080CrossRefGoogle Scholar
  20. 20.
    Murzin DYu, Simakova IL (2010) Kinet Catal 51:828CrossRefGoogle Scholar
  21. 21.
    Murzin DYu (2014) Catal Sci Technol 4:3340CrossRefGoogle Scholar
  22. 22.
    Boudart M (1968) Kinetics of chemical processes. Prentice-Hall, Englewood CliffsGoogle Scholar
  23. 23.
    Salmi TO, Mikkola J-P, Wärnå JP (2009) Chemical reaction engineering and reactor technology. CRC, Boca RatonGoogle Scholar
  24. 24.
    Murzin D, Salmi T (2005) Catalytic kinetics. Elsevier, AmsterdamGoogle Scholar
  25. 25.
    Temkin MI (1984) Kinet Catal 25:299Google Scholar
  26. 26.
    Rioux RM, Hsu BB, Grass ME, Song H, Somorjai GA (2008) Catal Lett 126:10CrossRefGoogle Scholar
  27. 27.
    Parmon VN (2015) Thermodynamics of irreversible processes for chemists, Intellect, ISBN: 978-5-91559-189-8, MoscowGoogle Scholar
  28. 28.
    Murzin DYu (2013) Engineering catalysis. De Gruyter, BerlinCrossRefGoogle Scholar
  29. 29.
    Beck IE, Bukhtiyarov VI, Pakharukov IYu, Zaikovsky VI, Kriventsov VV, Parmon VN (2009) J Catal 268:60CrossRefGoogle Scholar
  30. 30.
    Chen J, Zhang Q, Wang Y, Wan H (2008) Adv Synth Catal 350:453CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Åbo Akademi UniversityTurkuFinland
  2. 2.St. Petersburg State Institute of TechnologySt. PetersburgRussia

Personalised recommendations