A Comparison of the Redox Properties of Bulk Vanadium Mixed Oxide Catalysts
- 310 Downloads
- 4 Citations
Abstract
A series of bulk vanadium mixed oxides (Ce, Al, Fe or Cr) were successfully prepared. Methanol and propane were proposed as probe molecules to investigate the redox properties of this series of bulk vanadium mixed oxides and a qualitative picture of the redox properties was obtained. Specifically, we tested steady-state methanol oxidation at range 250–300 °C and oxidative dehydrogenation (ODH) of propane to propene at range 350–550 °C. We also explored the turn over frequency of redox products (TOFredox) and found that the TOFredox values in methanol oxidation and ODH of propane changed in the order as CeVO4 > AlVO4 > V2O5 > FeVO4 > CrVO4.
Graphical Abstract
Keywords
Propane Methanol Oxidation TOF Mixed oxidesNotes
Acknowledgments
This work was supported by Specialized Research Fund for the Doctoral Program of Higher Education (Grant CX2012B255).
References
- 1.Haber J (2009) Catal Today 142:100CrossRefGoogle Scholar
- 2.Cavani F, Centi G, Perego C, Vaccari A (2005) Catal Today 99:1CrossRefGoogle Scholar
- 3.Cavani F, Teles JH (2009) ChemSusChem 2:508CrossRefGoogle Scholar
- 4.Wachs IE (2011) Appl Catal A 391:36CrossRefGoogle Scholar
- 5.Briand LE, Farneth WE, Wachs IE (2000) Catal Today 62:219CrossRefGoogle Scholar
- 6.Bañares MA (1999) Catal Today 51:319CrossRefGoogle Scholar
- 7.Khodakov A, Olthof B, Bell AT, Iglesia E (1999) J Catal 181:205CrossRefGoogle Scholar
- 8.Bañares MA, Wachs IE (2002) J Raman Spectrosc 33:359CrossRefGoogle Scholar
- 9.Wachs IE (2005) Catal Today 100:79CrossRefGoogle Scholar
- 10.Sadakane M, Watanabe N, Katou T, Nodasaka Y, Ueda W (2007) Angew Chem Int Ed 46:1493CrossRefGoogle Scholar
- 11.Amakawa K, Kolen’ko YV, Villa A, Schuster ME, Csepei LI, Weinberg G, Wrabetz S, Naumann d’Alnoncourt R, Girgsdies F, Prati L, Schloegl R, Trunschke A (2013) ACS Catal 3:1103CrossRefGoogle Scholar
- 12.Wang L, Peng B, Peng L, Guo X, Xie Z, Ding W (2013) Sci Rep 3:1Google Scholar
- 13.Paier J, Penschke C, Sauer J (2013) Chem Rev 113:3349CrossRefGoogle Scholar
- 14.Shah PR, Khader MM, Vohs JM, Gorte RJ (2008) J Phys Chem C 112:2613CrossRefGoogle Scholar
- 15.Deo G, Wachs IE (1994) J Catal 146:323CrossRefGoogle Scholar
- 16.Routray K, Zhou W, Kiely CJ, Wachs IE (2010) ACS Catal 1:54CrossRefGoogle Scholar
- 17.Briand LE, Jehng J-M, Cornaglia L, Hirt AM, Wachs IE (2003) Catal Today 78:257CrossRefGoogle Scholar
- 18.Brázdová V, Ganduglia-Pirovano MV, Sauer J (2005) J Phys Chem B 109:394CrossRefGoogle Scholar
- 19.Wachs IE, Routray K (2012) ACS Catal 2:1235CrossRefGoogle Scholar
- 20.Badlani M, Wachs I (2001) Catal Lett 75:137CrossRefGoogle Scholar
- 21.Beck B, Harth M, Hamilton NG, Carrero C, Uhlrich JJ, Trunschke A, Shaikhutdinov S, Schubert H, Freund H-J, Schlögl R, Sauer J, Schomäcker R (2012) J Catal 296:120CrossRefGoogle Scholar
- 22.Derk A, Li B, Sharma S, Moore G, McFarland E, Metiu H (2013) Catal Lett 143:406CrossRefGoogle Scholar
- 23.Mitran G, Cacciaguerra T, Loridant S, Tichit D, Marcu I-C (2012) Appl Catal A 417–418:153CrossRefGoogle Scholar
- 24.Zhai Z, Getsoian AB, Bell AT (2013) J Catal 308:25CrossRefGoogle Scholar
- 25.Mattos ARJM, da SilvaSanGil RA, Rocco MLM, Eon J-G (2002) J Mol Catal A 178:229CrossRefGoogle Scholar
- 26.Kim H, Ferguson GA, Cheng L, Zygmunt SA, Stair PC, Curtiss LA (2011) J Phys Chem C 116:2927CrossRefGoogle Scholar
- 27.Ueda W, Vitry D, Katou T (2005) Catal Today 99:43CrossRefGoogle Scholar