Catalysis Letters

, Volume 145, Issue 9, pp 1703–1709 | Cite as

A Novel Photocatalytic System Constructed Using Eosin Y, Titanium Dioxide, and Keggin-Type Platinum(II)- and Aluminum(III)-Coordinated Polyoxotungstates for Hydrogen Production from Water Under Visible Light Irradiation



A novel photocatalytic system constructed using Eosin Y, α-Keggin-type diplatinum(II)-coordinated tungstophosphate Cs3[α-PW11O39{cis-Pt(NH3)2}2]·8H2O (Cs-Pt-1), α-Keggin-type mono-aluminum(III)-coordinated tungstosilicate K5[α-SiW11{Al(OH2)}O39]·7H2O (K-Al-1), and titanium dioxide achieved a steady rate of hydrogen evolution with highly effective utilization of platinum sites from aqueous triethanolamine solution during a long-term visible light irradiation.

Graphical Abstract


Diplatinum(II) complex Aluminum(III) complex Polyoxometalate Hydrogen evolution Visible light 



This work was supported by the Ministry of Education, Culture, Sports, Science and Technology of Japan. We also acknowledge Mr. Wataru Unno (Shizuoka University) for the synthesis and characterization of K-Al-1 and TMA-Al-4, and Mr. Daisuke Miyamae (Shizuoka University) for the UV–Vis and NMR measurements.

Supplementary material

10562_2015_1574_MOESM1_ESM.docx (456 kb)
Supplementary material 1 (DOCX 456 kb)


  1. 1.
    Fujishima A, Honda K (1972) Nature 238:37CrossRefGoogle Scholar
  2. 2.
    Abe R (2010) J Photochem Photobiol C Photochem Rev 11:179CrossRefGoogle Scholar
  3. 3.
    Maeda K, Domen K (2010) J Phys Chem Lett 1:2655CrossRefGoogle Scholar
  4. 4.
    Hisatomi T, Kubota J, Domen K (2014) Chem Soc Rev 43:7520CrossRefGoogle Scholar
  5. 5.
    Yang J, Wang D, Han H, Li C (2013) Acc Chem Res 46:1900CrossRefGoogle Scholar
  6. 6.
    Pope MT (1983) Heteropoly and isopoly oxometalates. Springer, BerlinCrossRefGoogle Scholar
  7. 7.
    Pope MT, Müller A (1991) Angew Chem Int Ed Engl 30:34CrossRefGoogle Scholar
  8. 8.
    Pope MT, Müller A (1994) In: Pope MT, Müller A (eds) Polyoxometalates: from platonic solids to anti-retroviral activity. Kluwer Academic Publishers, DordrechtCrossRefGoogle Scholar
  9. 9.
    Kato CN, Morii Y, Hattori S, Nakayama R, Makino Y, Uno H (2012) Dalton Trans 41:10021CrossRefGoogle Scholar
  10. 10.
    Liu X, Li Y, Peng S, Lu G, Li S (2012) Int J Hydrog Energy 37:12150CrossRefGoogle Scholar
  11. 11.
    Ma R-H, Wei T-T, Zhao C-Y (2011) Huaxue Shiji 33:307Google Scholar
  12. 12.
    Kato CN, Nagami M, Ukai N (2013) Appl Catal A Gen 452:69CrossRefGoogle Scholar
  13. 13.
    Kato CN, Katayama Y, Nagami M, Kato M, Yamasaki M (2010) Dalton Trans 39:11469CrossRefGoogle Scholar
  14. 14.
    Kato CN, Kashiwagi T, Unno W, Nakagawa M, Uno H (2014) Inorg Chem 53:4824CrossRefGoogle Scholar
  15. 15.
    Tézé A, Hervé G (1977) J Inorg Nucl Chem 39:999CrossRefGoogle Scholar
  16. 16.
    Kimura K, Miwa T, Imamura M (1970) Bull Chem Soc Jpn 43:1329CrossRefGoogle Scholar
  17. 17.
    Fu N, Lu G (2009) Appl Surf Sci 255:4378CrossRefGoogle Scholar
  18. 18.
    Ikeda S, Abe C, Torimoto T, Ohtani B (2003) J Photochem Photobiol A Chem 160:61CrossRefGoogle Scholar
  19. 19.
    Zhang J, Du P, Schneider J, Jarosz P, Eisenberg R (2007) J Am Chem Soc 129:7726CrossRefGoogle Scholar
  20. 20.
    Sreethawong T, Junbua C, Chavadej S (2009) J Power Sources 190:513CrossRefGoogle Scholar
  21. 21.
    Peng T, Dai K, Yi H, Ke D, Cai P, Zan L (2008) Chem Phys Lett 460:216CrossRefGoogle Scholar
  22. 22.
    Peng T, Ke D, Cai P, Dai K, Ma L, Zan L (2008) J Power Sources 180:498CrossRefGoogle Scholar
  23. 23.
    Liu X, Li Y, Peng S, Lu G, Li S (2013) Int J Hydrog Energy 38:11709CrossRefGoogle Scholar
  24. 24.
    Li Y, Xie C, Peng S, Lu G, Li S (2008) J Mol Catal A Chem 282:117CrossRefGoogle Scholar
  25. 25.
    Abe R, Shinmei K, Koumura N, Hara K, Ohtani B (2013) J Am Chem Soc 135:16872CrossRefGoogle Scholar
  26. 26.
    Min S, Lu G (2012) Int J Hydrog Energy 37:10564CrossRefGoogle Scholar
  27. 27.
    Hong J, Wang Y, Pan J, Zhong Z, Xu R (2011) Nanoscale 3:4655CrossRefGoogle Scholar
  28. 28.
    Ravotto L, Mazzaro R, Natali M, Ortolani L, Morandi V, Ceroni P, Bergamini G (2014) J Phys Chem Lett 5:798CrossRefGoogle Scholar
  29. 29.
    Ngweniform P, Kusumoto Y, Ikeda M, Somekawa S, Ahmmad B (2007) J Photochem Photobiol A Chem 189:198CrossRefGoogle Scholar
  30. 30.
    Liu X, Li Y, Peng S, Lu G, Li S (2013) Photochem Photobiol Sci 12:1903CrossRefGoogle Scholar
  31. 31.
    Zhao J, Ding Y, Wei J, Du X, Yu Y, Han R (2014) Int J Hydrog Energy 39:18908CrossRefGoogle Scholar
  32. 32.
    Zheng H-Q, Yong H, Ou-Yang T, Fan Y-T, Hou H-W (2013) Int J Hydrog Energy 38:12938CrossRefGoogle Scholar
  33. 33.
    Maeda K, Eguchi M, Lee S-HA, Youngblood WJ, Hata H, Mallouk TE (2009) J Phys Chem C 113:7962CrossRefGoogle Scholar
  34. 34.
    Watanabe M, Hagiwara H, Iribe A, Ogata Y, Shiomi K, Staykov A, Ida S, Tanaka K, Ishihara T (2014) J Mater Chem A 2:12952CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Shota Hattori
    • 1
  • Yuki Ihara
    • 1
  • Chika Nozaki Kato
    • 1
    • 2
  1. 1.Department of Chemistry, Faculty of ScienceShizuoka UniversityShizuokaJapan
  2. 2.Green Chemistry Research Division, Research Institute of Green Science and TechnologyShizuoka UniversityShizuokaJapan

Personalised recommendations