Skip to main content
Log in

Controlling Acidic Sites to Improve Hydroisomerization Performance of Pt/SAPO-11 Catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

SAPO-11 zeolites with different amount of silicon were synthesized to control the acidic sites of Pt/SAPO-11 catalysts. The structure, acidity and hydroisomerization performance of the SAPO-11 zeolites were systematically investigated. The results showed that with increase of silicon amount, the relative crystallinity of SAPO-11 apparently decreased and dominant crystal faces were different. BET surface area and total pore volume of the samples can change by difference of phase crystal structure. Amount of framework silicon controls acidic property of the SAPO-11. The more incorporation of silicon in the framework resulted in more medium acidic sites on the samples. The different acidic property of the samples was ascribed to different coordination mode of silicon. There are SM2 and SM3 substitution in the frameworks of the SAPO-11 zeolites. On catalysts of Pt/SAPO-11, more platinum existed in the pores. Platinum dispersion and reduction property were almost duplication for all the catalysts. The conversion of model compound and isomerization selectivity strongly depended on the acidic property of the catalysts. The results demonstrated that the optimum catalysts for hydrocarbon isomerization should remain the balance between metal sites and acidic sites.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Han L, Liu Y, Subhan F, Liu X, Yan Z (2014) Microporous Mesoporous Mater 194:90

    Article  CAS  Google Scholar 

  2. Li Q, Creaser D, Sterte J (1999) Microporous Mesoporous Mater 31:141

    Article  CAS  Google Scholar 

  3. Jentys A, Lercher J (2001) Stud Surf Sci Catal 137:345

    Article  CAS  Google Scholar 

  4. Campelo J, Lafont F, Marinas J (1995) J Catal 156:11

    Article  CAS  Google Scholar 

  5. Park K-C, Ihm S-K (2000) Appl Catal A 203:201

    Article  CAS  Google Scholar 

  6. Liu Y, Liu C, Liu C, Tian Z, Lin L (2004) Energy Fuels 18:1266

    Article  CAS  Google Scholar 

  7. Benitez V, Yori J, Grau J, Pieck C, Vera C (2006) Energy Fuels 20:422

    Article  CAS  Google Scholar 

  8. Walendziewski J, Pniak B (2003) Appl Catal A 250:39

    Article  CAS  Google Scholar 

  9. Sinha A, Sivasanker S (1999) Catal Today 49:293

    Article  CAS  Google Scholar 

  10. Meriaudeau P, Tuan VA, Lefebvre F, Nghiem VT, Naccache C (1998) Microporous Mesoporous Mater 22:435

    Article  CAS  Google Scholar 

  11. Liu P, Ren J, Sun Y (2008) Catal Commun 9:1804

    Article  CAS  Google Scholar 

  12. Claude MC, Martens JA (2000) J Catal 190:39

    Article  CAS  Google Scholar 

  13. Höchtl M, Jentys A, Vinek H (2000) J Catal 190:419

    Article  Google Scholar 

  14. Flanigen EM, Patton RL, Wilson ST (1988) Stud Surf Sci Catal 37:13

    Article  CAS  Google Scholar 

  15. Mertens M, Martens JA, Grobet PJ, Jacobs PA (1990) In: Barthomeuf D, Derouane EG, Hölderich W (eds) Guidelines for mastering the properties of molecular sieves, vol 221. Springer, US

  16. Sinha AK, Sivasanker S, Ratnasamy P (1998) Ind Eng Chem Res 37:2208

    Article  CAS  Google Scholar 

  17. Blackwell C, Patton R (1988) J Phys Chem 92:3965

    Article  CAS  Google Scholar 

  18. Barrett PA, Jones RH, Thomas JM, Sankar G, Shannon IJ, Catlow CRA (1996) Chem Commun 17:2001

    Article  Google Scholar 

  19. Ping L, Jie R, Yuhan S (2008) Chinese J Catal 29(4):379

    Article  Google Scholar 

  20. Sugimoto M, Katsuno H, Takatsu K, Kawata N (1987) Zeolites 7:503

    Article  CAS  Google Scholar 

  21. Guo L, Fan Y, Bao X, Shi G, Liu H (2013) J Catal 301:162

    Article  CAS  Google Scholar 

  22. Schmidt I, Madsen C, Jacobsen CJ (2000) Inorg Chem 39:2279

    Article  CAS  Google Scholar 

  23. Lin S, Li J, Sharma RP, Yu J, Xu R (2010) Top Catal 53:1304

    Article  CAS  Google Scholar 

  24. Zhang S, Chen S-L, Dong P, Jing L-J, Jiang K (2006) Chin J Catal 27:868

    CAS  Google Scholar 

  25. Guo L, Bao X, Fan Y, Shi G, Liu H, Bai D (2012) J Catal 294:161

    Article  CAS  Google Scholar 

  26. Yamamura M, Chaki K, Wakatsuki T, Okado H, Fujimoto K (1994) Zeolites 14:643

    Article  CAS  Google Scholar 

  27. Xu W, Dong J, Li J, Wu F (1990) J Chem Soc, Chem Commun 10:755

    Article  Google Scholar 

  28. Song C-M, Feng Y, Ma L-L (2012) Microporous Mesoporous Mater 147:205

    Article  Google Scholar 

  29. Kabe T, Qian W, Hirai Y, Li L, Ishihara A (2000) J Catal 90:191

    Article  Google Scholar 

  30. Zhang S, Chen S-L, Dong P, Yuan G, Xu K (2007) Appl Catal A 332:46

    Article  CAS  Google Scholar 

  31. Fan Y, Lei D, Shi G, Bao X (2006) Catal Today 114:388

    Article  CAS  Google Scholar 

  32. Weyda H, Lechert H (1989) Stud Surf Sci Catal 49:169

    Article  Google Scholar 

  33. Gregg SJ, Sing KSW, Salzberg H (1967) J Electrochem Soc 114:279C

    Article  Google Scholar 

  34. Chen N, Gong S, Shirai H, Watanabe T, Qian EW (2013) Appl Catal A466:105

    Article  Google Scholar 

  35. Gong S, Chen N, Nakayama S, Qian EW (2013) J Mol Catal A Chem 370:14

    Article  CAS  Google Scholar 

  36. Gong S, Shinozaki A, Qian EW (2012) Ind Eng Chem Res 51:13953

    Article  CAS  Google Scholar 

  37. Ren X-T, Li N, Cao J-Q, Wang Z-Y, Liu S-Y, Xiang S-H (2006) Appl Catal A 298:144

    Article  CAS  Google Scholar 

  38. Martens JA, Grobet PJ, Jacobs PA (1990) J Catal 126:299

    Article  CAS  Google Scholar 

  39. Blasco T, Chica A, Corma A, Murphy W, Agúndez-Rodríguez J, Pérez-Pariente J (2006) J Catal 242:153

    Article  CAS  Google Scholar 

  40. Komatsu T, Ikenaga H (2006) J Catal 241:426

    Article  CAS  Google Scholar 

  41. Yang X, Ma H, Xu Z, Xu Y, Tian Z, Lin L (2007) Catal Commun 8:1232

    Article  CAS  Google Scholar 

  42. Yuvaraj S, Chang T-H, Yeh C-T (2004) J Catal 221:466

    Article  CAS  Google Scholar 

  43. Zhong X, Zhu J, Liu J (2005) J Catal 236:9

    Article  CAS  Google Scholar 

  44. Corma A, Chica A, Guil J, Llopis F, Mabilon G, Perdigón-Melón J, Valencia S (2000) J Catal 189:382

    Article  CAS  Google Scholar 

  45. Lee E, Yun S, Park Y-K, Jeong S-Y, Han J, Jeon J-K (2014) J Ind Eng Chem 20:775

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the “Innovation Fund of China National Petroleum Corporation” (Grant No. 2012D-5006-0402).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinmei Liu.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 705 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, X., Liu, Y. & Liu, X. Controlling Acidic Sites to Improve Hydroisomerization Performance of Pt/SAPO-11 Catalysts. Catal Lett 145, 1464–1473 (2015). https://doi.org/10.1007/s10562-015-1554-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-015-1554-z

Keywords

Navigation