Catalysis Letters

, Volume 145, Issue 3, pp 777–783 | Cite as

High Sensitivity Silicon Slit Detectors for 1 nm Powder XRD Size Detection Limit

  • K. O’Connell
  • John R. Regalbuto


The limit of conventional X-ray powder diffraction for the detection of supported nanoparticles is usually taken to be 2–2.5 nm, at which size low signal to noise ratios make detection of particles of low weight loading and small particle size difficult. State of the art silicon strip detectors, however, are 2 orders of magnitude more sensitive than scintillation counters, and the greatly improved signal to noise ratio obtained in typical powder XRD scan times (tens of minutes to several hours) allows for the detection of much smaller nanoparticles than was previously possible. In this paper we demonstrate the use of a Si slit detector to characterize Au particles supported on carbon at sizes as small as 1.2 nm and weight loading as low as 0.33 %. At elevated scan speeds good corroboration between STEM and XRD is maintained. Thus, the latest generation XRD detector allows quick and simple access to the behaviorally rich 1–2 nm particle size range.

Graphical Abstract


Heterogeneous catalysis High-resolution electron microscopy XRD Nanoparticles Colloidal synthesis 



The authors would like to acknowledge the support of the NSF for Grant CBET-1160023.


  1. 1.
    Weibel A, Bouchet R, Boulc’ F, Knauth P (2005) Chem Mater 17:2378–2385CrossRefGoogle Scholar
  2. 2.
    Inoue M, Kimura M, Inui T (1999) Chem Commun 11:957–958CrossRefGoogle Scholar
  3. 3.
    Klug HP, Alexander LE (1974) X-ray diffraction procedures: for polycrystalline and amorphous materials, 2nd edn. Wiley-VCH, New York, p 992Google Scholar
  4. 4.
    B.E. Warren (1969) X-ray diffraction.
  5. 5.
    Taguchi T (2006) Powder Diffr 21:97–101CrossRefGoogle Scholar
  6. 6.
    Haruta M (1997) Catal Today 36:153–166CrossRefGoogle Scholar
  7. 7.
    Lopez N, Nørskov JK (2002) J Am Chem Soc 124:11262–11263CrossRefGoogle Scholar
  8. 8.
    Haruta M, Kobayashi T, Sano H, Yamada N (1987) Chem Lett 2:405–408CrossRefGoogle Scholar
  9. 9.
    Haruta M, Saika K, Kobayashi T, Tsubota S, Nakahara Y (1988) Chem Express 3:159–162Google Scholar
  10. 10.
    Haruta M (2003) Chem Rec 3:75–87CrossRefGoogle Scholar
  11. 11.
    Hutchings GJ, Haruta M (2005) Appl Catal A 291:2–5CrossRefGoogle Scholar
  12. 12.
    Nkosi B, Adams MD, Coville NJ, Hutchings GJ (1991) J Catal 128:378–386CrossRefGoogle Scholar
  13. 13.
    Valden M, Lai X, Goodman DW (1998) Science 281:1647–1650CrossRefGoogle Scholar
  14. 14.
    Haruta M (2002) Cattech 6:102–115CrossRefGoogle Scholar
  15. 15.
    Cleveland CL, Landman U, Schaaff TG, Shafigullin MN, Stephens PW, Whetten RL (1997) Phys Rev Lett 79:1873–1876CrossRefGoogle Scholar
  16. 16.
    Miller JT, Kropf AJ, Zha Y, Regalbuto JR, Delannoy L, Louis C, Bus E, van Bokhoven JA (2006) J Catal 240:222–234CrossRefGoogle Scholar
  17. 17.
    Szczygiel R, Grybos P, Maj P, Tsukiyama A, Matsushita K, Taguchi T (2009) Nucl Instrum Methods Phys Res Sect A 607:229–232CrossRefGoogle Scholar
  18. 18.
    Komaba S, Matsuura Y, Ishikawa T, Yabuuchi N, Murata W, Kuze S (2012) Electrochem Commun 21:65–68CrossRefGoogle Scholar
  19. 19.
    Bakenov Z, Taniguchi I (2010) Electrochem Commun 12:75–78CrossRefGoogle Scholar
  20. 20.
    Riello P, Canton P, Benedetti A (1998) Langmuir 14:6617–6619CrossRefGoogle Scholar
  21. 21.
    Block B, Bailar JC Jr (1951) J Am Chem Soc 73:4722–4725CrossRefGoogle Scholar
  22. 22.
    Minacheva LK, Gladkaya AS, Sakharova V, Don G, Shchelkov R, Porai-Koshits M, Neorg Zh (1988) Khim 233:683–687Google Scholar
  23. 23.
    Barnes SE (2011) Optimization of single and bimetallic noble metal catalysts by strong electrostatic adsorption. University of Illinois, ChicagoGoogle Scholar
  24. 24.
    Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) J Chem Soc Chem Commun 7:801–802CrossRefGoogle Scholar
  25. 25.
    Maye MM, Lou Y, Zhong C-J (2000) Langmuir 16:7520–7523CrossRefGoogle Scholar
  26. 26.
    Maye MM, Zheng W, Leibowitz FL, Ly NK, Zhong C-J (1999) Langmuir 16:490–497CrossRefGoogle Scholar
  27. 27.
    Bradley SA, SInkler W, Blom DA, Bigelow W, Voyles PM, Allard LF (2012) Catal Lett 142:176–182CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Chemical EngineeringUniversity of South CarolinaColumbiaUSA

Personalised recommendations