Advertisement

Catalysis Letters

, Volume 145, Issue 3, pp 930–938 | Cite as

Titania-Encapsulated Hybrid Nanocatalysts as Active and Thermally Stable Model Catalysts

  • Brundabana Naik
  • Song Yi Moon
  • Sunyoung Oh
  • Chan-Ho Jung
  • Jeong Young Park
Article

Abstract

Metal–oxide hybrid nanocatalysts with ultrathin oxide encapsulation can be a new platform to test the metal–support interaction. Metal nanoparticles (Ru, Rh, or Pt) capped with polymer/citrate were deposited on functionalized SiO2 and then an ultrathin layer of TiO2 was selectively coated on the SiO2 surface to prevent sintering and to provide high thermal stability while maximizing the metal–oxide interface for higher catalytic activity. Transmission electron microscopy studies confirmed that 2.1–2.3 nm metal nanoparticles were well dispersed and distributed throughout the surface of the 25 nm SiO2 nanoparticles, and that a 2 nm ultrathin TiO2 layer existed on the surface of the particles. The metal nanoparticles were still well exposed to the outer surface, thus allowing for surface characterization and catalytic activity. Even after calcination at 600 °C, the structure and morphology of the hybrid nanocatalysts remained intact, confirming high thermal stability. The catalytic activities of the hybrid nanocatalysts with ultrathin oxide encapsulation (SiO2/M/TiO2, M = Pt, Rh, or Ru) were evaluated using the CO oxidation reaction. Hybrid nanocatalysts encapsulated by the ultrathin oxide layer allowed us to obtain high thermal stability and better exposure of the metal active sites for a strong metal–support interaction between the metals and the ultrathin TiO2.

Graphical Abstract

Keywords

Hybrid nanocatalyst Metal oxide CO oxidation Encapsulation 

Notes

Acknowledgments

This work was supported by IBS-R004-G4.

References

  1. 1.
    Somorjai GA, Frei H, Park JY (2009) J Am Chem Soc 131:16589CrossRefGoogle Scholar
  2. 2.
    Joo SH, Park JY, Tsung C-K, Yamada Y, Yang P, Somorjai GA (2008) Nat Mater 8:126CrossRefGoogle Scholar
  3. 3.
    Somorjai GA, Park JY (2008) Angew Chem Int Ed 47:9212CrossRefGoogle Scholar
  4. 4.
    Reddy AS, Kim S, Jeong HY, Jin S, Qadir K, Jung K, Jung CH, Yun JY, Cheon JY, Yang J-M, Joo SH, Terasaki O, Park JY (2011) Chem Commun 47:8412CrossRefGoogle Scholar
  5. 5.
    Park JY, Zhang Y, Grass M, Zhang T, Somorjai GA (2008) Nano Lett 8:673CrossRefGoogle Scholar
  6. 6.
    Sun Y-N, Giordano L, Goniakowski J, Lewandowsky M, Qin Z-H, Noguera C, Shaikhutdinov S, Pacchioni G, Freund H-J (2010) Angew Chem 122:4520CrossRefGoogle Scholar
  7. 7.
    Warren SC, Perkins, Adams AM, Kamperman M, Burns AA, Arora H, Herz E, Suteewong T, Sai H, Li Z (2012) Nat Mater 11:460CrossRefGoogle Scholar
  8. 8.
    Davis ME (2002) Nature 417:813CrossRefGoogle Scholar
  9. 9.
    Kresge C, Leonowicz M, Roth W, Vartuli J, Beck J (1992) Nature 359:710CrossRefGoogle Scholar
  10. 10.
    Somorjai GA, Park JY (2008) Top Catal 49:126CrossRefGoogle Scholar
  11. 11.
    Joo SH, Choi SJ, Oh I, Kwak J, Liu Z, Terasaki O, Ryoo R (2001) Nature 412:169CrossRefGoogle Scholar
  12. 12.
    Sun S, Zeng H (2002) J Am Chem Soc 124:8204CrossRefGoogle Scholar
  13. 13.
    Qadir K, Kim SM, Seo H, Mun BS, Aksoy F, Liu Z, Park JY (2013) J Phys Chem C 117:13108CrossRefGoogle Scholar
  14. 14.
    Kim SH, Jung C-H, Sahu N, Park D, Yun JY, Ha H, Park JY (2013) Appl Catal A 454:53CrossRefGoogle Scholar
  15. 15.
    Seo Y, Cho K, Jung Y, Ryoo R (2013) ACS Catal 3:713CrossRefGoogle Scholar
  16. 16.
    Deluga G, Salge J, Schmidt L, Verykios X (2004) Science 303:993CrossRefGoogle Scholar
  17. 17.
    Forde MM, Armstrong RD, Hammond C, He Q, Jenkins RL, Kondrat SA, Dimitratos N, Lopez-Sanchez JA, Taylor SH, Willock D (2013) J Am Chem Soc 135:11087CrossRefGoogle Scholar
  18. 18.
    Zhang Q, Lee I, Joo JB, Zaera F, Yin Y (2012) Acc Chem Res 46:1816CrossRefGoogle Scholar
  19. 19.
    Zhang Q, Lee I, Ge J, Zaera F, Yin Y (2010) Adv Funct Mater 20:2201CrossRefGoogle Scholar
  20. 20.
    Turkevich J, Stevenson PC, Hillier J (1951) Discuss Faraday Soc 11:55CrossRefGoogle Scholar
  21. 21.
    Joo SH, Park JY, Renzas JR, Butcher DR, Huang W, Somorjai GA (2010) Nano Lett 10:2709CrossRefGoogle Scholar
  22. 22.
    Grass ME, Zhang Y, Butcher DR, Park JY, Li Y, Bluhm H, Bratlie KM, Zhang T, Somorjai GA (2008) Angew Chem Int Ed 47:8893CrossRefGoogle Scholar
  23. 23.
    Lim SH, Phonthammachai N, Pramana SS, White T (2008) Langmuir 24:6226CrossRefGoogle Scholar
  24. 24.
    Ge J, Zhang Q, Zhang T, Yin Y (2008) Angew Chem Int Ed 47:8924CrossRefGoogle Scholar
  25. 25.
    Wen D, Guo S, Zhai J, Deng L, Ren W, Dong S (2009) J Phys Chem C 113:13023CrossRefGoogle Scholar
  26. 26.
    Freeman RG, Grabar KC, Allison KJ, Bright RM, Davis JA, Guthrie AP, Hommer MB, Jackson MA, Smith PC, Walter DG, Natan MJ (1995) Science 267:1629CrossRefGoogle Scholar
  27. 27.
    Westcott SL, Oldenburg SJ, Lee TR, Halas NJ (1998) Langmuir 14:5396CrossRefGoogle Scholar
  28. 28.
    Zhang H, Zong R, Zhao J, Zhu Y (2008) Environ Sci Technol 42:3803CrossRefGoogle Scholar
  29. 29.
    Hire CC, Genuino HC, Suib SL, Adamson DH (2013) Chem Mater 25:2056CrossRefGoogle Scholar
  30. 30.
    López T, Espinoza K, Kozina A, Galano A, Alexander-Katz R (2010) J Phys Chem C 114:20022CrossRefGoogle Scholar
  31. 31.
    Zhu Y, Li H, Zheng Q, Xu J, Li X (2012) Langmuir 28:7843CrossRefGoogle Scholar
  32. 32.
    An K, Alayoglu S, Musselwhite N, Plamthottam S, Melaet G, Lindemann AE, Somorjai GA (2013) J Am Chem Soc 135:16689CrossRefGoogle Scholar
  33. 33.
    Prashar AK, Mayadevi S, Rajamohan PR, Nalinidevi R (2011) Appl Catal A 403:91CrossRefGoogle Scholar
  34. 34.
    Boronat M, Corma A (2010) Langmuir 26:16607CrossRefGoogle Scholar
  35. 35.
    Kim YH, Yim S-D, Park ED (2012) Catal Today 185:143CrossRefGoogle Scholar
  36. 36.
    Grass ME, Joo SH, Zhang Y, Somorjai GA (2009) J Phys Chem C 113:8616CrossRefGoogle Scholar
  37. 37.
    Daniel W, Kim Y, Peebles H, White J (1981) Surf Sci 111:189CrossRefGoogle Scholar
  38. 38.
    Park JY, Renzas JR, Hsu BB, Somorjai GA (2007) J Phys Chem C 111:15331CrossRefGoogle Scholar
  39. 39.
    Hervier A, Renzas JR, Park JY, Somorjai GA (2009) Nano Lett 9:3930CrossRefGoogle Scholar
  40. 40.
    Park JY, Somorjai GA (2006) ChemPhysChem 7:1409CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Brundabana Naik
    • 1
    • 2
  • Song Yi Moon
    • 1
    • 2
  • Sunyoung Oh
    • 1
    • 2
  • Chan-Ho Jung
    • 1
    • 2
  • Jeong Young Park
    • 1
    • 2
  1. 1.Center for Nanomaterials and Chemical ReactionsInstitute for Basic ScienceDaejeonRepublic of Korea
  2. 2.Graduate School of EEWSKorea Advanced Institute of Science and Technology (KAIST)DaejeonRepublic of Korea

Personalised recommendations