Advertisement

Catalysis Letters

, Volume 145, Issue 2, pp 527–532 | Cite as

Promiscuous Lipase-Catalyzed C–C Bond Formation Reactions Between 4 Nitrobenzaldehyde and 2-Cyclohexen-1-one in Biphasic Medium: Aldol and Morita–Baylis–Hillman Adduct Formations

  • Manali Kapoor
  • Abir B. Majumder
  • Munishwar Nath Gupta
Article

Abstract

Lipases catalyzed the reaction between 4-nitrobenzaldehyde and 2-cyclohexen-1-one in aqueous-DMSO co-solvent mixtures to give Morita–Baylis–Hillman product and aldol product. Among lipases, Burkholderia cepacia lipase gave the best overall conversion of 96 % in 50 % (v/v) DMSO while Mucor javanicus lipase showed highest stereoselectivity in the formation of the aldol (79 % ee) and Morita–Baylis–Hillman product (63 % ee) with 30 % (v/v) DMSO.

Graphical Abstract

Lipase catalysed Morita–Baylis–Hillman reaction

Keywords

Morita–Baylis–Hillman reaction Lipases Aldol condensation Enzymes in organic solvents Enzyme promiscuity 

Notes

Acknowledgments

The work was supported by financial support of the Department of Science and Technology (DST), Govt. of India (Grant No.: SR/SO/BB-68/2010).

Supplementary material

10562_2014_1429_MOESM1_ESM.docx (126 kb)
Supplementary material 1 (DOCX 125 kb)

References

  1. 1.
    Singh A, Chisti Y, Banerjee UC (2012) Process Biochem 47:2398–2404CrossRefGoogle Scholar
  2. 2.
    Othman SS, Basri M, Hussein MZ, Rahman MBA, Jasmani H, Rahman RNZRA, Salleh AB (2008) Food Chem 106:437–443CrossRefGoogle Scholar
  3. 3.
    Rahman MBA, Zaidan US, Basri M, Salleh AB, Rahman RNZRA, Hussein MZ (2008) J Mol Catal B: Enzym 50:33–39CrossRefGoogle Scholar
  4. 4.
    Adlercreutz P (2013) Chem Soc Rev 42:6406–6436CrossRefGoogle Scholar
  5. 5.
    Gotor V, Alfonso I, Uradiales EG (2008) Asymmetric organic synthesis with enzymes. Wiley-VCH Verlag, WeinheimCrossRefGoogle Scholar
  6. 6.
    Hult K, Berglund P (1987) Trends Biotechnol 25:231–238CrossRefGoogle Scholar
  7. 7.
    Yang F, Wang Z, Wang H, Zhang H, Yue H, Wang L (2014) R Soc Chem Adv 4:25633–25636Google Scholar
  8. 8.
    Gupta MN, Kapoor M, Majumder AB, Singh V (2011) Curr Sci 100:1152–1163Google Scholar
  9. 9.
    Kapoor M, Gupta MN (2012) Process Biochem 47:555–569CrossRefGoogle Scholar
  10. 10.
    Majumder A, Gupta MN (2014) Synth Commun 44:818–826CrossRefGoogle Scholar
  11. 11.
    Wang H, Wang Z, Wang C, Yang F, Zhang H, Yue H, Wang L (2014) R Soc Chem Adv 4:35686–35689Google Scholar
  12. 12.
    Langer P (2000) Angew Chem Int Ed 39:3049–3052CrossRefGoogle Scholar
  13. 13.
    Shi Y-L, Shi M (2007) Eur J Org Chem 18:2905–2916CrossRefGoogle Scholar
  14. 14.
    Basavaiah D, Veeraraghavaiah G (2012) Chem Soc Rev 41:68–78CrossRefGoogle Scholar
  15. 15.
    Reetz MT, Mondiere R, Carballeira JD (2007) Tetrahedron Lett 48:1679–1681CrossRefGoogle Scholar
  16. 16.
    Lopez-Iglesias M, Busto E, Gotor V, Gotor-Fernandes V (2011) Adv Synth Catal 353:2345–2353CrossRefGoogle Scholar
  17. 17.
    Jiang L, Yu H-W (2014) Biotechnol Lett 36:99–103CrossRefGoogle Scholar
  18. 18.
    Li K, He T, Li C, Feng X-W, Wang N, Yu X-Q (2009) Green Chem 11:777–779CrossRefGoogle Scholar
  19. 19.
    de Souza ROMA, Matos LMC, Gonçalves KM, Costa ICR, Babics I, Leite SGF, Oestreicher EG, Antunes OAC (2009) Tetrahedron Lett 50:2017–2018CrossRefGoogle Scholar
  20. 20.
    Arora B, Pandey PS, Gupta MN (2014) Tetrahedron Lett 55:3920–3922CrossRefGoogle Scholar
  21. 21.
    Majumder AB, Ramesh NG, Gupta MN (2009) Tetrahedron Lett 50:5190–5193CrossRefGoogle Scholar
  22. 22.
    Kataoka T, Iwama T, Tsujiyama S-I, Iwamura T, Watanabe S-I (1998) Tetrahedron 54:11813–11824CrossRefGoogle Scholar
  23. 23.
    Luo S, Zhang B, He J, Janezuk A, Wang PG, Cheng J-P (2002) Tetrahedron Lett 43:7361–7369CrossRefGoogle Scholar
  24. 24.
    Wu W-B, Xu J-M, Wu Q, Lv D-S, Lin X-F (2006) Adv Synth Catal 348:487–492CrossRefGoogle Scholar
  25. 25.
    Wang J-L, Liu B-K, Yin C, Wu Q, Lin X-F (2011) Tetrahedron 67:2689–2692CrossRefGoogle Scholar
  26. 26.
    Lanne C (1987) Biocatalysis 30:17–22CrossRefGoogle Scholar
  27. 27.
    Gupta MN (1992) Eur J Biochem 203:25–32CrossRefGoogle Scholar
  28. 28.
    Carrea G, Riva S (2000) Angew Chem Int Ed 39:2226–2254CrossRefGoogle Scholar
  29. 29.
    Khmelnitsky YL, Mozhaev VV, Belova AB, Sergeeva MV, Martinek K (1991) Eur J Biochem 198:31–41CrossRefGoogle Scholar
  30. 30.
    McDougal NT, Trevellini WL, Rodgen SA, Kliman LT, Schaus SE (2004) Adv Synth Catal 346:1231–1240CrossRefGoogle Scholar
  31. 31.
    Svedendahl M, Carlqvist P, Branneby C, Allner O, Frise A, Hult K, Berglund P, Brinck T (2008) ChemBioChem 9:2443–2451CrossRefGoogle Scholar
  32. 32.
    Torre O, Alfonso I, Gotor V (2004) Chem Commun 1724–1725Google Scholar
  33. 33.
    Carlqvist P, Svedendahl M, Branneby C, Hult K, Brinck T, Berglund P (2005) ChemBioChem 6:331–336CrossRefGoogle Scholar
  34. 34.
    Khersonsky O, Tawfik DS (2010) Ann Rev Biochem 79:471–505CrossRefGoogle Scholar
  35. 35.
    Gatri R, El Gaied MM (2002) Tetrahedron Lett 43:7835–7836CrossRefGoogle Scholar
  36. 36.
    Rastogi N, Namboothiri INN, Cojocaru M (2004) Tetrahedron Lett 45(24):4745–4748CrossRefGoogle Scholar
  37. 37.
    Bjelic S, Nivon LG, Çelebi-Olçum N, Kiss G, Rosewall CF, Lovick HM, Ingalls EL, Gallaher JL, Seetharaman J, Lew S, Montelione GT, Hunt JF, Michael FE, Houk KN, Baker D (2013) ACS Chem Biol 8:749–757CrossRefGoogle Scholar
  38. 38.
    Branneby C, Carlqvist P, Magnusson A, Hult K, Brinck T, Berglund P (2003) J Am Chem Soc 125:874–875CrossRefGoogle Scholar
  39. 39.
    Shi M, Liu X-G (2008) Org Lett 10:1043–1046CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Manali Kapoor
    • 1
  • Abir B. Majumder
    • 2
  • Munishwar Nath Gupta
    • 3
  1. 1.Department of ChemistryIndian Institute of Technology DelhiNew DelhiIndia
  2. 2.Department of ChemistryRajiv Gandhi University of Knowledge TechnologiesBasarIndia
  3. 3.Department of Biochemical Engineering & BiotechnologyIndian Institute of Technology DelhiNew DelhiIndia

Personalised recommendations