Advertisement

Catalysis Letters

, Volume 144, Issue 12, pp 2121–2128 | Cite as

Glucose Dehydration to 5-Hydroxymethylfurfural by a Combination of a Basic Zirconosilicate and a Solid Acid

  • Chaochao Yue
  • Marcello S. Rigutto
  • Emiel J. M. Hensen
Article

Abstract

A recently reported layered zirconosilicate Na2ZrSi4O11 displays good activity in the isomerization of glucose to fructose in water at mild conditions. Part of the activity derives from the homogeneous base-catalyzed reaction due to exchange of the sodium ions of the layered zirconosilicate in water. Following ion-exchange, the isomerization is mainly catalyzed by the basic sites of the re-used heterogeneous zirconosilicate catalyst. Combined with the solid acid Amberlyst-15, 5-hydroxymethylfurfural (5-HMF) can be produced from glucose in a one-pot reaction. In a THF/H2O mixture solvent system, 5-HMF was obtained with 45 % selectivity at 87 % glucose conversion at a temperature of 180 °C in 1.5 h.

Graphical Abstract

Keywords

Zirconosilicate 5-hydroxymethylfurfural Glucose isomerization 

Notes

Acknowledgments

The authors thank Shell Global Solutions for financial support.

References

  1. 1.
    Genti G, Van Santen RA (2007) Catalysis for renewables, Wiley-VCH Weinheim 9Google Scholar
  2. 2.
    Dodds DR, Gross EA (2007) Science 318:1250–1251CrossRefGoogle Scholar
  3. 3.
    Torres AI, Daoutidis P, Tsapatsis M (2010) Energy Environ Sci 3:1560–1572CrossRefGoogle Scholar
  4. 4.
    Roman-Leshkov Y, Barrett CJ, Liu ZY, Dumesic JA (2007) Nature 447:982–985CrossRefGoogle Scholar
  5. 5.
    Wang TF, Nolte MW, Shanks BH (2014) Green Chem 16:5–48Google Scholar
  6. 6.
    Lima S, Dias AS, Lin Z, Brandao P, Ferreira P, Pillinger M, Rocha J, Casilda VC, Valente AA (2008) Appl Catal A Gen 339:21–27CrossRefGoogle Scholar
  7. 7.
    Roman-Leshkov Y, Moliner M, Labinger JA, Davis ME (2010) Angew Chem Int Ed 49:8954–8957CrossRefGoogle Scholar
  8. 8.
    Bhosale S, Rao M, Deshpande V (1996) Microbiol Rev 60:280–300Google Scholar
  9. 9.
    Moreau C, Durand R, Razigade S, Duhamet J, Faugeras P, Rivalier P (1996) Appl Catal A Gen 145:211–224CrossRefGoogle Scholar
  10. 10.
    Yong G, Zhang YG, Ying JY (2008) Angew Chem Int Ed 47:9345–9348CrossRefGoogle Scholar
  11. 11.
    Li YN, Wang JQ, He LN, Yang ZZ, Liu AH, Yu B, Luan CR (2012) Green Chem 14:2752–2758CrossRefGoogle Scholar
  12. 12.
    Chen BF, Li FB, Huang ZJ, Lu T, Yuan Y, Yuan GQ (2014) ChemSusChem 7:202–209CrossRefGoogle Scholar
  13. 13.
    Huang R, Qi W, Su RX, He ZM (2010) Chem Commun 46:1115–1117CrossRefGoogle Scholar
  14. 14.
    Takagaki A, Ohara M, Nishimura S, Ebitani K (2009) Chem Commun 41:6276–6278CrossRefGoogle Scholar
  15. 15.
    Osatiashtiani A, Lee AF, Brown DR, Melero JA, Morales G, Wilson K (2014) Catal Sci Technol 4:333–342CrossRefGoogle Scholar
  16. 16.
    Nikolla E, Leshkov YR, Moliner M, Davis ME (2011) ACS Catal 1:408–410CrossRefGoogle Scholar
  17. 17.
    Zhao HB, Holladay JE, Brown H, Zhang ZC (2007) Science 316:1597–1600CrossRefGoogle Scholar
  18. 18.
    Degirmenci V, Pidko EA, Magusin PCMM, Hensen EJM (2011) ChemCatChem 6:969–972CrossRefGoogle Scholar
  19. 19.
    Yue C, Magusin PCMM, Mezari B, Rigutto MS, Hensen EJM (2013) Micropor Mesopor Mater 180:48–55CrossRefGoogle Scholar
  20. 20.
    Jeong NC, Lee MH, Yoon KB (2007) Angew Chem Int Ed 46:5868–5872CrossRefGoogle Scholar
  21. 21.
    Rocha J, Ferreira P, Lin Z, Agger JR, Anderson MW (1998) Chem Commun 1269–1270Google Scholar
  22. 22.
    Fletcher RA, Bibby DM (1987) Clays Clay Miner 35:318–320CrossRefGoogle Scholar
  23. 23.
    Cybulski A, Kuster BFM, Marin GB (1991) J Mol Catal 68:87–103CrossRefGoogle Scholar
  24. 24.
    Tewari YB (1990) Appl Biochem Biotechnol 23:187–203CrossRefGoogle Scholar
  25. 25.
    Yang BY, Montgomery R (1996) Carbohydr Res 280:27–45CrossRefGoogle Scholar
  26. 26.
    Park SW, Cho SH, Ahn WS, Kim WJ (2011) Micropor Mesopor Mater 145:200–204CrossRefGoogle Scholar
  27. 27.
    Watanabe M, Aizawa Y, Iida T, Nishimura R, Inomata H (2005) Appl Catal A Gen 295:150–156CrossRefGoogle Scholar
  28. 28.
    Musau RM, Munavu RM (1987) Biomass 13:67–74CrossRefGoogle Scholar
  29. 29.
    Ohara M, Takagaki A, Nishimura S, Ebitani K (2010) Appl Catal A Gen 383:149–155CrossRefGoogle Scholar
  30. 30.
    Choudhary V, Bumett RI, Vlachos DG, Sandler SI (2012) J Phys Chem C 116:5116–5120CrossRefGoogle Scholar
  31. 31.
    Patil SKR, Heltzel J, Lund CRF (2012) Energy Fuels 26:5281–5293CrossRefGoogle Scholar
  32. 32.
    Qi X, Watanabe M, Aida TM, Smith RL (2009) Green Chem 11:1327–1331CrossRefGoogle Scholar
  33. 33.
    Yang G, Pidko EA, Hensen EJM (2012) J Catal 295:122–132CrossRefGoogle Scholar
  34. 34.
    De S, Dutta S, Saha B (2011) Green Chem 13:2859–2868CrossRefGoogle Scholar
  35. 35.
    Roman-Leshkov Y, Dumesic JA (2009) Top Catal 52:297–303CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Chaochao Yue
    • 1
  • Marcello S. Rigutto
    • 2
  • Emiel J. M. Hensen
    • 1
  1. 1.Inorganic Materials ChemistryEindhoven University of TechnologyEindhovenThe Netherlands
  2. 2.Shell Global Solutions International B.V.AmsterdamThe Netherlands

Personalised recommendations