Catalysis Letters

, Volume 144, Issue 12, pp 2086–2090 | Cite as

High Activity of Gold/Tin-Dioxide Catalysts for Low-Temperature CO Oxidation: Application of a Reducible Metal Oxide to a Catalyst Support

  • Yasushi Maeda
  • Tomoki Akita
  • Masanori Kohyama


Au/SnO2 catalysts were prepared by both the solid grinding (SG) method and the deposition precipitation (DP) method. Compared to samples prepared by the DP method, the SG samples showed remarkably high activity for low-temperature CO oxidation, because of a more efficient Au deposition on SnO2 by the SG method. Detailed analysis revealed that the perimeter interface between Au and SnO2 is the active site for catalysis. The present results suggest that the activity of Au/oxide catalysts is associated with the reducibility of the metal oxide supports at the perimeter interface.

Graphical Abstract


Heterogeneous catalysis CO oxidation Oxide supports Gold Tin-Dioxide Perimeter interface 



This work was supported by JSPS KAKENHI Grant number 26286054.

Supplementary material

10562_2014_1376_MOESM1_ESM.docx (431 kb)
Supplementary material 1 (DOCX 431 kb)


  1. 1.
    Haruta M, Kobayashi T, Sano H, Yamada N (1987) Chem Lett 16:405–408CrossRefGoogle Scholar
  2. 2.
    Haruta M (2011) Faraday Discuss 152:11–32CrossRefGoogle Scholar
  3. 3.
    Fujitani T, Nakamura I (2011) Angew Chem Int Ed 50:10144–10147CrossRefGoogle Scholar
  4. 4.
    Widmann D, Behm RJ (2011) Angew Chem Int Ed 50:10241–10245CrossRefGoogle Scholar
  5. 5.
    Maeda Y, Iizuka Y, Kohyama M (2013) J Am Chem Soc 135:906–909CrossRefGoogle Scholar
  6. 6.
    Okumura M, Nakamura S, Tsubota S, Nakamura T, Azuma M, Haruta M (1998) Catal Lett 51:53–58CrossRefGoogle Scholar
  7. 7.
    Liu XY, Wang A, Zhang T, Mou C-Y (2013) Nano Today 8:403–416CrossRefGoogle Scholar
  8. 8.
    Kobayashi T, Haruta M, Sano H (1989) Chem Express 14:217–220Google Scholar
  9. 9.
    Schubert MM, Plzak V, Garche J, Behm RJ (2001) Catal Lett 76:143–150CrossRefGoogle Scholar
  10. 10.
    Moreau F, Bond CB (2006) Catal Today 114:362–368CrossRefGoogle Scholar
  11. 11.
    Wang S, Huang J, Zhao Y, Wu S, Zhang S, Huang W (2006) Mater Lett 60:1706–1709CrossRefGoogle Scholar
  12. 12.
    Wang S, Huang J, Zhao Y, Zhang T, Wu S, Zhang S, Huang W (2006) J Mol Catal A 259:245–252CrossRefGoogle Scholar
  13. 13.
    Wang S, Wang Y, Jiang J, Liu R, Li M, Su Y, Zhu B, Zhang S, Huang W, Wu S (2009) Catal Commun 10:640–644CrossRefGoogle Scholar
  14. 14.
    Huang J, Xue C, Wang B, Guo X, Wang S (2013) React Kinet Mech Catal 108:403–416CrossRefGoogle Scholar
  15. 15.
    Haruta M (1997) Catal Surv Jpn 1:61–73CrossRefGoogle Scholar
  16. 16.
    Tsubota S, Nakamura T, Tanaka K, Haruta M (1998) Catal Lett 56:131–135CrossRefGoogle Scholar
  17. 17.
    Overbury SH, Schwartz V, Mullins DR, Yan W, Dai S (2006) J Catal 241:56–65CrossRefGoogle Scholar
  18. 18.
    Li N, Chen Q-Y, Luo L-F, Huang W-X, Luo M-F, Hu G-S, Lu J-Q (2013) Appl Catal B 142–143:523–532CrossRefGoogle Scholar
  19. 19.
    Rodriguez-Santiago V, Fedkin MV, Wesolowski DJ, Rosenqvist J, Lvov SN (2009) Langmuir 25:8101–8110CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Research Institute for Ubiquitous Energy DevicesNational Institute of Advanced Industrial Science and Technology (AIST)IkedaJapan

Personalised recommendations