Advertisement

Catalysis Letters

, Volume 145, Issue 2, pp 505–510 | Cite as

Magnetic Carbon Nanofiber Networks as Support for Ionic Liquid Based Catalyst

  • Evelisy C. O. Nassor
  • Juliana C. Tristão
  • Henrique S. Oliveira
  • Flávia C. C. Moura
  • Eduardo N. dos Santos
  • Rochel M. Lago
  • Maria Helena Araujo
Article

Abstract

In this work, the ionic liquid (IL) 1-hexyl-3-methyl-imidazolium bromide (HMIm.Br) containing Pd suspended nanoparticles was supported on a nanostructured magnetically recoverable carbon nanofiber network. The magnetic material was prepared by a simple reaction of ethanol directly with a nanostructured hematite. SEM, XRD, Mössbauer, Raman, TG/DTA, BET surface area and magnetization analyses suggested that the network is based on carbon nanofibers with carbon coated magnetic Fe nanoparticles. These magnetic networks offer a high exposed carbon fiber area, which has a good interaction with the IL to form a thin layer. Preliminary studies with a Pd dispersed in supported IL as catalyst for the hydrogenation of 1,5-cyclooctadiene showed a membrane effect, which leads to an important increase on the selective hydrogenation of 1,5-cyclooctadiene to cyclooctene.

Graphical Abstract

Keywords

SILP catalysts Hydrogenation Ionic liquids Membrane-like effect 

Notes

Acknowledgments

The authors acknowledge the financial support provided from FAPEMIG, PRPq/UFMG, CNPq, CAPES, and PETROBRAS.

Supplementary material

10562_2014_1374_MOESM1_ESM.docx (1 mb)
Supplementary material 1 (DOCX 1064 kb)

References

  1. 1.
    Baudoux J, Perrigaud K, Madec P-J, Gaumont A-C, Dez I (2007) Green Chem 9:1346CrossRefGoogle Scholar
  2. 2.
    Van Doorslaer C, Wahlen J, Mertens P, Binnemans K, De Vos D (2010) Dalton Trans 39:8377CrossRefGoogle Scholar
  3. 3.
    Feher C, Krivan E, Hancsok J, Skoda-Foldes R (2012) Green Chem 14:403CrossRefGoogle Scholar
  4. 4.
    Ha HNT, Duc DT, Dao TV, Le MT, Riisager A, Fehrmann R (2012) Catal Commun 25:136CrossRefGoogle Scholar
  5. 5.
    Hagiwara H (2012) Synlett 23:837CrossRefGoogle Scholar
  6. 6.
    Hanna DG, Shylesh S, Werner S, Bell AT (2012) J Catal 292:166CrossRefGoogle Scholar
  7. 7.
    Jourshari MS, Mamaghani M, Tabatabaeian K, Shirini F (2012) J Iran Chem Soc 9:75CrossRefGoogle Scholar
  8. 8.
    Mikkola J-P, Virtanen P, Karhu H, Salmi T, Murzin DY (2006) Green Chem 8:197CrossRefGoogle Scholar
  9. 9.
    Mikkola J-PT, Virtanen PP, Kordás K, Karhu H, Salmi TO (2007) Appl Catal. A 328:68Google Scholar
  10. 10.
    Riisager A, Fehrmann R, Haumann M, Wasserscheid P (2006) Eur J Inorg Chem 2006:695CrossRefGoogle Scholar
  11. 11.
    Riisager A, Fehrmanna R, Haumannb M, Wasserscheidb P (2006) Top Catal 40:91CrossRefGoogle Scholar
  12. 12.
    Salminen E, Virtanen P, Kordás K, Mikkola J-P (2012) Catal Today 196:126CrossRefGoogle Scholar
  13. 13.
    Shylesh S, Hanna D, Werner S, Bell AT (2012) ACS Catal 2:487CrossRefGoogle Scholar
  14. 14.
    Virtanen P, Karhu H, Kordas K, Mikkola J-P (2007) Chem Eng Sci 62:3660CrossRefGoogle Scholar
  15. 15.
    Werner S, Szesni N, Kaiser M, Haumann M, Wasserscheid P (2012) Chem Eng Technol 35:1962CrossRefGoogle Scholar
  16. 16.
    Yao R, Wang H, Han J (2012) Frontiers Chem Sci Engg 6:239CrossRefGoogle Scholar
  17. 17.
    Breitenlechner S, Fleck M, Müller TE, Suppan A (2004) J Mol Catal A: Chem 214:175CrossRefGoogle Scholar
  18. 18.
    Carlin RT, Cho TH, Fuller J (1998) Proceedings of the Eleventh International Symposium on Molten Salts Xi 98:180Google Scholar
  19. 19.
    Kim DW, Chi DY (2004) Angew Chem Int Ed 43:483CrossRefGoogle Scholar
  20. 20.
    Mehnert CP (2005) Chem Eur J 11:50CrossRefGoogle Scholar
  21. 21.
    Riisager A, Fehrmann R, Flicker S, van Hal R, Haumann M, Wasserscheid P (2005) Angew Chem Int Ed 44:815CrossRefGoogle Scholar
  22. 22.
    Shi F, Zhang Q, Li D, Deng Y (2005) Chem Eur J 11:5279CrossRefGoogle Scholar
  23. 23.
    Valkenberg MH, de Castro C, Holderich WF (2002) Green Chem 4:88CrossRefGoogle Scholar
  24. 24.
    Gadenne B, Hesemann P, Moreau JJE (2004) Chem Commun 15:1768CrossRefGoogle Scholar
  25. 25.
    Kume Y, Qiao K, Tomida D, Yokoyama C (2008) Catal Commun 9:369CrossRefGoogle Scholar
  26. 26.
    Polshettiwar V, Molnár Á (2007) Tetrahedron 63:6949CrossRefGoogle Scholar
  27. 27.
    Zheng X, Luo S, Zhang L, Cheng J-P (2009) Green Chem 11:455CrossRefGoogle Scholar
  28. 28.
    Burguete MI, Galindo F, Garcia-Verdugo E, Karbass N, Luis SV (2007) Chem Commun 29:3086CrossRefGoogle Scholar
  29. 29.
    Burguete MI, Erythropel H, Garcia-Verdugo E, Luis SV, Sans V (2008) Green Chem 10:401CrossRefGoogle Scholar
  30. 30.
    Tao R, Miao S, Liu Z, Xie Y, Han B, An G, Ding K (2009) Green Chem 11:96CrossRefGoogle Scholar
  31. 31.
    Huang J, Jiang T, Gao H, Han B, Liu Z, Wu W, Chang Y, Zhao G (2004) Angew Chem Int Ed 43:1397CrossRefGoogle Scholar
  32. 32.
    Selvam T, Machoke A, Schwieger W (2012) Appl Catal A 445–446:92CrossRefGoogle Scholar
  33. 33.
    Nassor ECO, Tristão JC, dos Santos EN, Moura FCC, Lago RM, Araujo MH (2012) J Mol Catal A 363–364:74CrossRefGoogle Scholar
  34. 34.
    Oliveira AAS, Tristão JC, Ardisson JD, Dias A, Lago RM (2011) Appl Catal B 105:163CrossRefGoogle Scholar
  35. 35.
    Teixeira APC, Tristão JC, Araujo MH, Oliveira LCA, Moura FCC, Ardisson JD, Amorim CC, Lago RM (2012) J Braz Chem Soc 23:1579CrossRefGoogle Scholar
  36. 36.
    Tristão J, Ardisson J, Sansiviero M, Lago R (2009) LACAME 2008:15Google Scholar
  37. 37.
    Abu-Reziq R, Alper H, Wang D, Post ML (2006) J Am Chem Soc 128:5279CrossRefGoogle Scholar
  38. 38.
    Jacinto MJ, Kiyohara PK, Masunaga SH, Jardim RF, Rossi LM (2008) Appl Catal A 338:52CrossRefGoogle Scholar
  39. 39.
    Rossi LM, Silva FP, Vono LLR, Kiyohara PK, Duarte EL, Itri R, Landers R, Machado G (2007) Green Chem 9:379CrossRefGoogle Scholar
  40. 40.
    Shekaari H, Mansoori Y, Sadeghi R (2008) J Chem Thermodyn 40:852CrossRefGoogle Scholar
  41. 41.
    Nockemann P, Binnemans K, Driesen K (2005) Chem Phys Lett 415:131CrossRefGoogle Scholar
  42. 42.
    Ramos-Fernández EV, Ramos-Fernández JM, Martínez-Escandell M, Sepúlveda-Escribano A, Rodríguez-Reinoso F (2009) Catal Lett 133:267CrossRefGoogle Scholar
  43. 43.
    Sadezky A, Muckenhuber H, Grothe H, Niessner R, Pöschl U (2005) Carbon 43:1731CrossRefGoogle Scholar
  44. 44.
    Shimada T, Sugai T, Fantini C, Souza M, Cançado LG, Jorio A, Pimenta MA, Saito R, Grüneis A, Dresselhaus G, Dresselhaus MS, Ohno Y, Mizutani T, Shinohara H (2005) Carbon 43:1049CrossRefGoogle Scholar
  45. 45.
    Moura FCC, Lago RM, dos Santos EN, Araujo MH (2002) Catal Commun 3:541CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Evelisy C. O. Nassor
    • 1
  • Juliana C. Tristão
    • 2
  • Henrique S. Oliveira
    • 1
  • Flávia C. C. Moura
    • 1
  • Eduardo N. dos Santos
    • 1
  • Rochel M. Lago
    • 1
  • Maria Helena Araujo
    • 1
  1. 1.Departamento de Química, Instituto de Ciências ExatasUniversidade Federal de Minas GeraisBelo HorizonteBrazil
  2. 2.Universidade Federal de ViçosaFlorestalBrazil

Personalised recommendations