Catalysis Letters

, Volume 144, Issue 11, pp 1877–1883 | Cite as

A Metal–Organic Framework Cu2(BDC)2(DABCO) as an Efficient and Reusable Catalyst for Ullmann-Type N-Arylation of Imidazoles



A highly porous metal–organic framework (Cu2(BDC)2(DABCO)) was synthesized and used as an efficient and recyclable heterogeneous catalyst for the Ullmann-type N-arylation of aryl halides with imidazoles. The Cu2(BDC)2(DABCO) was characterized by several techniques, including X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, thermogravimetric analysis, Fourier transform infrared, atomic absorption spectrophotometry, and nitrogen physisorption measurements. The catalyst offered high activity under mild conditions, confirming outstanding advantages when employing the Cu2(BDC)2(DABCO) as catalyst for Ullmann-type N-arylation reaction. The catalyst could be separated from the reaction mixture by simple filtration, and could be reused without a significant degradation in catalytic activity.

Graphical Abstract


Cu2(BDC)2(DABCO) N-arylation Coupling reaction, imidazoles Metal–organic frameworks 

Supplementary material

10562_2014_1355_MOESM1_ESM.docx (1.7 mb)
Supplementary material 1 (DOCX 1745 kb)


  1. 1.
    Maiti D (2011) Chem Commun 47:8340–8342CrossRefGoogle Scholar
  2. 2.
    Zhang R, Miao C, Shen Z, Wang S, Xia C, Sun W (2012) ChemCatChem 4:824–830CrossRefGoogle Scholar
  3. 3.
    Kataoka N, Shelby Q, Stambuli JP, Hartwig JF (2002) J Org Chem 67:5553–5566CrossRefGoogle Scholar
  4. 4.
    Anderson KW, Tundel RE, Ikawa T, Altman RA, Buchwald SL (2006) Angew Chem Int Ed 45:6523–6527CrossRefGoogle Scholar
  5. 5.
    Huang Z, Li F, Chen B, Xue F, Chen G, Yuan G (2011) Appl Catal A 403:104–111CrossRefGoogle Scholar
  6. 6.
    Panda N, Jena AK, Mohapatra S, Rout SR (2011) Tetrahedron Lett 52:1924–1927CrossRefGoogle Scholar
  7. 7.
    Taillefer M, Xia N, Ouali A (2007) Angew Chem Int Ed 46:934–936CrossRefGoogle Scholar
  8. 8.
    Zhang R, Miao C, Wang S, Xia C, Sun W (2013) ChemCatChem 5:142–145CrossRefGoogle Scholar
  9. 9.
    Wang Z, Cohen SM (2007) J Am Chem Soc 129:12368–12369CrossRefGoogle Scholar
  10. 10.
    Nguyen JG, Cohen SM (2010) J Am Chem Soc 132:4560–4561CrossRefGoogle Scholar
  11. 11.
    Farha OK, Hupp JT (2010) Acc Chem Res 43:1166–1175CrossRefGoogle Scholar
  12. 12.
    Farha OK, Malliakas CD, Kanatzidis MG, Hupp JT (2010) J Am Chem Soc 132:950–952CrossRefGoogle Scholar
  13. 13.
    Tanabe KK, Cohen SM (2009) Angew Chem Int Ed 48:7424–7427CrossRefGoogle Scholar
  14. 14.
    Bae Y-S, Spokoyny AM, Farha OK, Snurr RQ, Hupp JT, Mirkin CA (2010) Chem Commun 46:3478–3480CrossRefGoogle Scholar
  15. 15.
    Roberts JM, Fini BM, Sarjeant AA, Farha OK, Hupp JT, Scheidt KA (2012) J Am Chem Soc 134:3334–3337CrossRefGoogle Scholar
  16. 16.
    Janssens N, Wee LH, Bajpe S, Breynaert E, Kirschhock CEA, Martens JA (2012) Chem Sci 3:1847–1850CrossRefGoogle Scholar
  17. 17.
    Lili L, Xin Z, Jinsen G, Chunming X (2012) Green Chem 14:1710–1720CrossRefGoogle Scholar
  18. 18.
    Li Z-H, Xue L-P, Wang L, Zhang S-T, Zhao B-T (2012) Inorg Chem Commun 27:119–121CrossRefGoogle Scholar
  19. 19.
    Phan NTS, Nguyen TT, Ho P, Nguyen KD (2013) ChemCatChem 5:1822–1831CrossRefGoogle Scholar
  20. 20.
    Phan NTS, Nguyen TT, Nguyen VT, Nguyen KD (2013) ChemCatChem 5:2374–2381Google Scholar
  21. 21.
    Tan K, Nijem N, Canepa P, Gong Q, Li J, Thonhauser T, Chabal YJ (2012) Chem Mater 24:3153–3167CrossRefGoogle Scholar
  22. 22.
    Uemura T, Ono Y, Kitagawa K, Kitagawa S (2008) Macromolecules 41:87–94CrossRefGoogle Scholar
  23. 23.
    Cao C, Lu Z, Cai Z, Pang G, Shi Y (2012) Synth Commun 42:279–284CrossRefGoogle Scholar
  24. 24.
    Zhu L, Cheng L, Zhang Y, Xie R, You J (2007) J Org Chem 72:2737–2743CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Chemical EngineeringHCMC University of Technology, VNU-HCMHo Chi Minh CityViet Nam

Personalised recommendations