Catalysis Letters

, Volume 144, Issue 10, pp 1728–1734 | Cite as

Selective Conversion of Cellulose into Ethylene Glycol over Metal–Organic Framework-Derived Multifunctional Catalysts

  • Shengpei Wang
  • Jinzhu Chen
  • Limin Chen


A multifunctional catalyst of ruthenium supported on NENU-3 [a hybrid of phosphotungstic acid (PTA) and HKUST-1] is developed. An ethylene glycol (EG) yield of 50.2 % can be directly obtained from cellulose with Ru/NENU-3 as catalyst under optimized conditions. As a multifunctional catalyst of Ru/NENU-3, the presence of both the active specie of PTA for cellulose hydrolysis and subsequent C–C bond cleavage of cellulose-derived sugars, and the active specie of Ru for glycolaldehyde hydrogenation is indispensible for the formation of EG from cellulose.

Graphical Abstract


Cellulose Ethylene glycol Metal–organic frameworks Multifunctional catalyst Ruthenium 



This work was financially supported by National Basic Research Program of China (973 Program, 2012CB215304), 100 Talents Program of the Chinese Academy of Sciences, and Guangdong Natural Science Foundation (S2013010012986, S2011010002274 and S2013040012615).

Supplementary material

10562_2014_1334_MOESM1_ESM.docx (71 kb)
Supplementary material 1 (DOCX 70 kb)


  1. 1.
    Huber GW, Iborra S, Corma A (2006) Chem Rev 106:4044–4098CrossRefGoogle Scholar
  2. 2.
    Stöcker M (2008) Angew Chem Int Ed 47:9200–9211CrossRefGoogle Scholar
  3. 3.
    Rinaldi R, Schüth F (2009) Energy Environ Sci 2:610–626CrossRefGoogle Scholar
  4. 4.
    Corma A, Iborra S, Velty A (2007) Chem Rev 107:2411–2502CrossRefGoogle Scholar
  5. 5.
    Chheda JN, Huber GW, Dumesic JA (2007) Angew Chem Int Ed 46:7164–7183CrossRefGoogle Scholar
  6. 6.
    Fukuoka A, Dhepe PL (2006) Angew Chem Int Ed 45:5161–5163CrossRefGoogle Scholar
  7. 7.
    Ruppert AM, Weinberg K, Palkovits R (2012) Angew Chem Int Ed 51:2564–2601CrossRefGoogle Scholar
  8. 8.
    Wang AQ, Zhang T (2013) Acc Chem Res 46:1377–1386CrossRefGoogle Scholar
  9. 9.
    van de Vyver S, Geboers J, Jacobs PA, Sels BF (2011) ChemCatChem 3:82–94CrossRefGoogle Scholar
  10. 10.
    Deng WP, Wang YL, Zhang QH, Wang Y (2012) Catal Surv Asia 16:91–105CrossRefGoogle Scholar
  11. 11.
    Pang JF, Wang AQ, Zheng MY, Zhang YH, Huang YQ, Chen XW, Zhang T (2012) Green Chem 14:614–617CrossRefGoogle Scholar
  12. 12.
    Shrotri A, Tanksale A, Beltramini JN, Gurav H, Chilukuri SV (2012) Catal Sci Technol 2:1852–1858CrossRefGoogle Scholar
  13. 13.
    Reyes-Luyanda D, Flores-Cruz J, Morales-Pérez PJ, Encarnación-Gómez LG, Shi FY, Voyles PM, Cardona-Martínez N (2012) Top Catal 55:148–161CrossRefGoogle Scholar
  14. 14.
    Gu M, Yu D, Zhang H, Sun P, Huang H (2009) Catal Lett 133:214–220CrossRefGoogle Scholar
  15. 15.
    Williamson R, Holladay J, Jaffe M, Brunelle D (2006) Continuous isosorbide production from sorbitol using solid acid catalysis. Pacific Northwest National Laboratory, RichlandCrossRefGoogle Scholar
  16. 16.
    Yue H, Zhao Y, Ma X, Gong J (2012) Chem Soc Rev 41:4218–4244CrossRefGoogle Scholar
  17. 17.
    Ji N, Zhang T, Zheng MY, Wang AQ, Wang H, Wang X, Chen JG (2008) Angew Chem Int Ed 47:8510–8513CrossRefGoogle Scholar
  18. 18.
    Tai ZJ, Zhang JY, Wang AQ, Zheng MY, Zhang T (2012) Chem Commun 48:7052–7054CrossRefGoogle Scholar
  19. 19.
    Tai ZJ, Zhang JY, Wang AQ, Pang JF, Zheng MY, Zhang T (2013) ChemSusChem 6:652–658CrossRefGoogle Scholar
  20. 20.
    Liu Y, Luo C, Liu HC (2012) Angew Chem Int Ed 51:3249–3253CrossRefGoogle Scholar
  21. 21.
    Baek IG, You SJ, Park ED (2012) Bioresour Technol 114:684–690CrossRefGoogle Scholar
  22. 22.
    Chen JZ, Wang SP, Huang J, Chen LM, Ma LL, Huang X (2013) ChemSusChem 6:1545–1555CrossRefGoogle Scholar
  23. 23.
    Sun C-Y, Liu S-X, Liang D-D, Shao K-Z, Ren Y-H, Su Z-M (2009) J Am Chem Soc 131:1883–1888CrossRefGoogle Scholar
  24. 24.
    Chui SS-Y, Lo SM-F, Charmant JPH, Orpen AG, Williams ID (1999) Science 283:1148–1150CrossRefGoogle Scholar
  25. 25.
    Küsgens P, Rose M, Senkovska I, Fröde H, Henschel A, Siegle S, Kaskel S (2009) Microporous Mesoporous Mater 120:325–330CrossRefGoogle Scholar
  26. 26.
    Ji N, Zheng MY, Wang AQ, Zhang T, Chen JGG (2012) ChemSusChem 5:939–944CrossRefGoogle Scholar
  27. 27.
    Kobayashi H, Ito Y, Komanoya T, Hosaka Y, Dhepe PL, Kasai K, Hara K, Fukuoka A (2011) Green Chem 13:326–333CrossRefGoogle Scholar
  28. 28.
    Deng WP, Tan XS, Fang WH, Zhang QH, Wang Y (2009) Catal Lett 133:167–174CrossRefGoogle Scholar
  29. 29.
    Loera-Serna S, Oliver-Tolentino MA, de Lourdes López-Núñez M, Santana-Cruz A, Guzmán-Vargas A, Cabrera-Sierra R, Beltrán HI, Flores JJ (2012) Alloys Compd 540:113–120CrossRefGoogle Scholar
  30. 30.
    Wang C, Zhao HB, Wang H, Liu LT, Xiao CX, Ma D (2012) Catal Today 183:143–153CrossRefGoogle Scholar
  31. 31.
    Kang JC, Zhang SL, Zhang QH, Wang Y (2009) Angew Chem Int Ed 48:2565–2568CrossRefGoogle Scholar
  32. 32.
    Wettstein SG, Bond JQ, Alonso DM, Pham HN, Datye AK, Dumesic JA (2012) Appl Catal B Environ 117–118:321–329CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy ConversionChinese Academy of SciencesGuangzhouPeople’s Republic of China
  2. 2.College of Environment and EnergySouth China University of TechnologyGuangzhouPeople’s Republic of China
  3. 3.University of Chinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations