Skip to main content

Advertisement

Log in

Synthesis of Chiral Imidazolium Salts from a Carbohydrate and Their Application in Pd-Catalyzed Suzuki–Miyaura Reaction

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A series of chiral 1-(acetylated glucopyranosyl)-3-substituted-imidazolium salts [3-substitute = n-butyl (1a), 3-bromopropyl (1b), 2-chloromethyl benzyl (1c), and 4-chloromethyl benzyl (1d)] have been synthesized. Preliminary catalytic studies show that these imidazolinium salts are remarkably efficient in Pd-catalyzed Suzuki–Miyaura reaction. Functionalized aryl boronic acids reaction with aryl halides (including aryl iodides, aryl bromides and activated aryl chlorides) using environmentally friendly conditions (ethanol aqueous and ambient). The excellent isolate yields reveal that the bulky carbohydrate unit is promising for the construction of highly active transition-metal catalyst.

Graphical Abstract

Four C-1 bonded sugar-containing chiral imidazolium salts 1ad were synthesized and they all exhibited excellent catalytic activity in Pd-catalyzed Suzuki reactions. Pd/1a is most effective for the coupling of functionalized arylboronic acids with arylhalides including activated arylchlorides in ethanol aqueous under air.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2

Similar content being viewed by others

References

  1. Suzuki A (2011) Angew Chem Int Ed 50:6722–6737

    Article  CAS  Google Scholar 

  2. Heck RF (1968) J Am Chem Soc 90:5518–5526

    Article  CAS  Google Scholar 

  3. Negishi E-I (2011) Angew Chem Int Ed 50:6738–6764

    Article  CAS  Google Scholar 

  4. Arduengo AJ, Harlow RL, Kline M (1991) J Am Chem Soc 113:361–363

    Article  CAS  Google Scholar 

  5. Yang L, Guan P, He P, Chen Q, Cao C, Peng Y, Shi Z, Pang G, Shi Y (2012) Dalton Trans 41:5020–5025

    Article  CAS  Google Scholar 

  6. Mahatthananchai J, Kaeobamrung J, Bode JW (2012) ACS Catal 2:494–503

    Article  CAS  Google Scholar 

  7. Liu G, Wilkerson PD, Toth CA, Xu H (2012) Org Lett 14:858–861

    Article  CAS  Google Scholar 

  8. DiRocco DA, Rovis T (2012) J Am Chem Soc 134:8094–8097

    Article  CAS  Google Scholar 

  9. Peñafiel I, Pastor IM, Yus M (2013) Eur J Org Chem 2013:1479–1484

    Article  Google Scholar 

  10. Benhamou L, Chardon E, Lavigne G, Bellemin-Laponnaz S, César V (2011) Chem Rev 111:2705–2733

    Article  CAS  Google Scholar 

  11. Fortman GC, Nolan SP (2011) Chem Soc Rev 40:5151–5169

    Article  CAS  Google Scholar 

  12. Díez-González S, Marion N, Nolan SP (2009) Chem Rev 109:3612–3676

    Article  Google Scholar 

  13. Marion N, Nolan SP (2008) Acc Chem Res 41:1440–1449

    Article  CAS  Google Scholar 

  14. Viciu MS, Kelly RA, Stevens ED, Naud F, Studer M, Nolan SP (2003) Org Lett 5:1479–1482

    Article  CAS  Google Scholar 

  15. Huynh HV, Wong LR, Ng PS (2008) Organometallics 27:2231–2237

    Article  CAS  Google Scholar 

  16. Grasa GA, Viciu MS, Huang JK, Zhang CM, Trudell ML, Nolan SP (2002) Organometallics 21:2866–2873

    Article  CAS  Google Scholar 

  17. Boysen MMK (2007) Chem Eur J 13:8648–8659

    Article  CAS  Google Scholar 

  18. Woodward S, Diéguez M, Pàmies O (2010) Coord Chem Rev 254:2007–2030

    Article  CAS  Google Scholar 

  19. Fujimoto YK, Green DF (2012) J Am Chem Soc 134:19639–19651

    Article  CAS  Google Scholar 

  20. Legrand F-X, Ménand M, Sollogoub M, Tilloy S, Monflier E (2011) New J Chem 35:2061–2065

    Article  CAS  Google Scholar 

  21. Guitet M, Marcelo F, de Beaumais SA, Zhang Y, Jiménez-Barbero J, Tilloy S, Monflier E, Ménand M, Sollogoub M (2013) Eur J Org Chem 2013:3691–3699

    Article  CAS  Google Scholar 

  22. Yang CC, Lin PS, Liu FC, Lin IJB, Lee GH, Peng SM (2010) Organometallics 29:5959–5971

    Article  CAS  Google Scholar 

  23. Shi J-C, Lei N, Tong Q, Peng Y, Wei J, Jia L (2007) Eur J Inorg Chem 2007:2221–2224

    Article  Google Scholar 

  24. Tewes F, Schlecker A, Harms K, Glorius F (2007) J Organomet Chem 692:4593–4602

    Article  CAS  Google Scholar 

  25. Nishioka T, Shibata T, Kinoshita I (2007) Organometallics 26:1126–1128

    Article  CAS  Google Scholar 

  26. Keitz BK, Grubbs RH (2010) Organometallics 29:403–408

    Article  CAS  Google Scholar 

  27. Shibata T, Hashimoto H, Kinoshita I, Yano S, Nishioka T (2011) Dalton Trans 40:4826–4829

    Article  CAS  Google Scholar 

  28. Shibata T, Ito S, Doe M, Tanaka R, Hashimoto H, Kinoshita I, Yano S, Nishioka T (2011) Dalton Trans 40:6778–6784

    Article  CAS  Google Scholar 

  29. Mohanty S, Suresh D, Balakrishna MS, Mague JT (2008) Tetrahedron 64:240–247

    Article  CAS  Google Scholar 

  30. Hanhan M, Senemoglu Y (2012) Transit Met Chem 37:109–116

    Article  CAS  Google Scholar 

  31. Yu HW, Shi JC, Zhang H, Yang PY, Wang XP, Jin ZL (2006) J Mol Catal A 250:15–19

    Article  CAS  Google Scholar 

  32. Zhou ZG, Shi JC, Hu QS, Xie YR, Du ZY, Zhang SY (2011) Appl Organomet Chem 25:616–619

    Article  CAS  Google Scholar 

  33. Carrettin S, Guzman J, Corma A (2005) Angew Chem Int Ed 44:2242–2245

    Article  CAS  Google Scholar 

  34. Venkatesan P, Santhanalakshmi J (2010) J Mol Catal A: Chem 326:99–106

    Article  CAS  Google Scholar 

  35. Morgan BP, Galdamez GA, Gilliard JRJ, Smith RC (2009) Dalton Trans 2020–2028

  36. Marziale AN, Jantke D, Faul SH, Reiner T, Herdtweck E, Eppinger J (2011) Green Chem 13:169–177

    Article  CAS  Google Scholar 

  37. Gallon BJ, Kojima RW, Kaner RB, Diaconescu PL (2007) Angew Chem Int Ed 46:7251–7254

    Article  CAS  Google Scholar 

  38. Bourne EJ, Finch P, Nagpurkar AG (1972) J Chem Soc Perkin Trans 1:2202–2205

    Article  Google Scholar 

  39. Carrow BP, Hartwig JF (2011) J Am Chem Soc 133:2116–2119

    Article  CAS  Google Scholar 

  40. Chen M-T, Vicic DA, Turner ML, Navarro O (2011) Organometallics 30:5052–5056

    Article  CAS  Google Scholar 

  41. Yuan B, Pan Y, Li Y, Yin B, Jiang H (2010) Angew Chem Int Ed 49:4054–4058

    Article  CAS  Google Scholar 

  42. Liu N, Liu C, Jin ZL (2012) Green Chem 14:592–597

    Article  CAS  Google Scholar 

  43. Bernhardt F, Trotzki R, Szuppa T, Stolle A, Ondruschka B (2010) Beilstein J Org Chem 6:1–9

    Article  Google Scholar 

  44. Sun Y, Tippmann EM, Platz MS (2003) Org Lett 5:1305–1307

    Article  CAS  Google Scholar 

  45. Shi JC, Yang PY, Tong QS, Wu Y, Peng YR (2006) J Mol Catal A 259:7–10

    Article  CAS  Google Scholar 

  46. Anderson KW, Ikawa T, Tundel RE, Buchwald SL (2006) J Am Chem Soc 128:10694–10695

    Article  CAS  Google Scholar 

  47. Feuerstein M, Berthiol F, Doucet H, Santelli M (2002) Synlett 2002:1807–1810

    Article  Google Scholar 

  48. Ruiz JR, Jiménez-Sanchidrián C, Mora M (2006) J Fluor Chem 127:443–445

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 21241005, 21363001, 2146002 and 21061001), the Key Laboratory of Jiangxi University for Functional Materials Chemistry, and Fujian Normal University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongrong Xie or Qidan Ling.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 12086 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Z., Qiu, J., Xie, L. et al. Synthesis of Chiral Imidazolium Salts from a Carbohydrate and Their Application in Pd-Catalyzed Suzuki–Miyaura Reaction. Catal Lett 144, 1911–1918 (2014). https://doi.org/10.1007/s10562-014-1323-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-014-1323-4

Keywords

Navigation