Advertisement

Catalysis Letters

, Volume 144, Issue 11, pp 1911–1918 | Cite as

Synthesis of Chiral Imidazolium Salts from a Carbohydrate and Their Application in Pd-Catalyzed Suzuki–Miyaura Reaction

  • Zhonggao Zhou
  • Jiabin Qiu
  • Lifang Xie
  • Fan Du
  • Guohai Xu
  • Yongrong Xie
  • Qidan Ling
Article

Abstract

A series of chiral 1-(acetylated glucopyranosyl)-3-substituted-imidazolium salts [3-substitute = n-butyl (1a), 3-bromopropyl (1b), 2-chloromethyl benzyl (1c), and 4-chloromethyl benzyl (1d)] have been synthesized. Preliminary catalytic studies show that these imidazolinium salts are remarkably efficient in Pd-catalyzed Suzuki–Miyaura reaction. Functionalized aryl boronic acids reaction with aryl halides (including aryl iodides, aryl bromides and activated aryl chlorides) using environmentally friendly conditions (ethanol aqueous and ambient). The excellent isolate yields reveal that the bulky carbohydrate unit is promising for the construction of highly active transition-metal catalyst.

Graphical Abstract

Four C-1 bonded sugar-containing chiral imidazolium salts 1ad were synthesized and they all exhibited excellent catalytic activity in Pd-catalyzed Suzuki reactions. Pd/1a is most effective for the coupling of functionalized arylboronic acids with arylhalides including activated arylchlorides in ethanol aqueous under air.

Keywords

Carbohydrate Imidazol-2-ylidene Palladium catalyst Suzuki reaction 

Notes

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 21241005, 21363001, 2146002 and 21061001), the Key Laboratory of Jiangxi University for Functional Materials Chemistry, and Fujian Normal University.

Supplementary material

10562_2014_1323_MOESM1_ESM.doc (11.8 mb)
Supplementary material 1 (DOC 12086 kb)

References

  1. 1.
    Suzuki A (2011) Angew Chem Int Ed 50:6722–6737CrossRefGoogle Scholar
  2. 2.
    Heck RF (1968) J Am Chem Soc 90:5518–5526CrossRefGoogle Scholar
  3. 3.
    Negishi E-I (2011) Angew Chem Int Ed 50:6738–6764CrossRefGoogle Scholar
  4. 4.
    Arduengo AJ, Harlow RL, Kline M (1991) J Am Chem Soc 113:361–363CrossRefGoogle Scholar
  5. 5.
    Yang L, Guan P, He P, Chen Q, Cao C, Peng Y, Shi Z, Pang G, Shi Y (2012) Dalton Trans 41:5020–5025CrossRefGoogle Scholar
  6. 6.
    Mahatthananchai J, Kaeobamrung J, Bode JW (2012) ACS Catal 2:494–503CrossRefGoogle Scholar
  7. 7.
    Liu G, Wilkerson PD, Toth CA, Xu H (2012) Org Lett 14:858–861CrossRefGoogle Scholar
  8. 8.
    DiRocco DA, Rovis T (2012) J Am Chem Soc 134:8094–8097CrossRefGoogle Scholar
  9. 9.
    Peñafiel I, Pastor IM, Yus M (2013) Eur J Org Chem 2013:1479–1484CrossRefGoogle Scholar
  10. 10.
    Benhamou L, Chardon E, Lavigne G, Bellemin-Laponnaz S, César V (2011) Chem Rev 111:2705–2733CrossRefGoogle Scholar
  11. 11.
    Fortman GC, Nolan SP (2011) Chem Soc Rev 40:5151–5169CrossRefGoogle Scholar
  12. 12.
    Díez-González S, Marion N, Nolan SP (2009) Chem Rev 109:3612–3676CrossRefGoogle Scholar
  13. 13.
    Marion N, Nolan SP (2008) Acc Chem Res 41:1440–1449CrossRefGoogle Scholar
  14. 14.
    Viciu MS, Kelly RA, Stevens ED, Naud F, Studer M, Nolan SP (2003) Org Lett 5:1479–1482CrossRefGoogle Scholar
  15. 15.
    Huynh HV, Wong LR, Ng PS (2008) Organometallics 27:2231–2237CrossRefGoogle Scholar
  16. 16.
    Grasa GA, Viciu MS, Huang JK, Zhang CM, Trudell ML, Nolan SP (2002) Organometallics 21:2866–2873CrossRefGoogle Scholar
  17. 17.
    Boysen MMK (2007) Chem Eur J 13:8648–8659CrossRefGoogle Scholar
  18. 18.
    Woodward S, Diéguez M, Pàmies O (2010) Coord Chem Rev 254:2007–2030CrossRefGoogle Scholar
  19. 19.
    Fujimoto YK, Green DF (2012) J Am Chem Soc 134:19639–19651CrossRefGoogle Scholar
  20. 20.
    Legrand F-X, Ménand M, Sollogoub M, Tilloy S, Monflier E (2011) New J Chem 35:2061–2065CrossRefGoogle Scholar
  21. 21.
    Guitet M, Marcelo F, de Beaumais SA, Zhang Y, Jiménez-Barbero J, Tilloy S, Monflier E, Ménand M, Sollogoub M (2013) Eur J Org Chem 2013:3691–3699CrossRefGoogle Scholar
  22. 22.
    Yang CC, Lin PS, Liu FC, Lin IJB, Lee GH, Peng SM (2010) Organometallics 29:5959–5971CrossRefGoogle Scholar
  23. 23.
    Shi J-C, Lei N, Tong Q, Peng Y, Wei J, Jia L (2007) Eur J Inorg Chem 2007:2221–2224CrossRefGoogle Scholar
  24. 24.
    Tewes F, Schlecker A, Harms K, Glorius F (2007) J Organomet Chem 692:4593–4602CrossRefGoogle Scholar
  25. 25.
    Nishioka T, Shibata T, Kinoshita I (2007) Organometallics 26:1126–1128CrossRefGoogle Scholar
  26. 26.
    Keitz BK, Grubbs RH (2010) Organometallics 29:403–408CrossRefGoogle Scholar
  27. 27.
    Shibata T, Hashimoto H, Kinoshita I, Yano S, Nishioka T (2011) Dalton Trans 40:4826–4829CrossRefGoogle Scholar
  28. 28.
    Shibata T, Ito S, Doe M, Tanaka R, Hashimoto H, Kinoshita I, Yano S, Nishioka T (2011) Dalton Trans 40:6778–6784CrossRefGoogle Scholar
  29. 29.
    Mohanty S, Suresh D, Balakrishna MS, Mague JT (2008) Tetrahedron 64:240–247CrossRefGoogle Scholar
  30. 30.
    Hanhan M, Senemoglu Y (2012) Transit Met Chem 37:109–116CrossRefGoogle Scholar
  31. 31.
    Yu HW, Shi JC, Zhang H, Yang PY, Wang XP, Jin ZL (2006) J Mol Catal A 250:15–19CrossRefGoogle Scholar
  32. 32.
    Zhou ZG, Shi JC, Hu QS, Xie YR, Du ZY, Zhang SY (2011) Appl Organomet Chem 25:616–619CrossRefGoogle Scholar
  33. 33.
    Carrettin S, Guzman J, Corma A (2005) Angew Chem Int Ed 44:2242–2245CrossRefGoogle Scholar
  34. 34.
    Venkatesan P, Santhanalakshmi J (2010) J Mol Catal A: Chem 326:99–106CrossRefGoogle Scholar
  35. 35.
    Morgan BP, Galdamez GA, Gilliard JRJ, Smith RC (2009) Dalton Trans 2020–2028Google Scholar
  36. 36.
    Marziale AN, Jantke D, Faul SH, Reiner T, Herdtweck E, Eppinger J (2011) Green Chem 13:169–177CrossRefGoogle Scholar
  37. 37.
    Gallon BJ, Kojima RW, Kaner RB, Diaconescu PL (2007) Angew Chem Int Ed 46:7251–7254CrossRefGoogle Scholar
  38. 38.
    Bourne EJ, Finch P, Nagpurkar AG (1972) J Chem Soc Perkin Trans 1:2202–2205CrossRefGoogle Scholar
  39. 39.
    Carrow BP, Hartwig JF (2011) J Am Chem Soc 133:2116–2119CrossRefGoogle Scholar
  40. 40.
    Chen M-T, Vicic DA, Turner ML, Navarro O (2011) Organometallics 30:5052–5056CrossRefGoogle Scholar
  41. 41.
    Yuan B, Pan Y, Li Y, Yin B, Jiang H (2010) Angew Chem Int Ed 49:4054–4058CrossRefGoogle Scholar
  42. 42.
    Liu N, Liu C, Jin ZL (2012) Green Chem 14:592–597CrossRefGoogle Scholar
  43. 43.
    Bernhardt F, Trotzki R, Szuppa T, Stolle A, Ondruschka B (2010) Beilstein J Org Chem 6:1–9CrossRefGoogle Scholar
  44. 44.
    Sun Y, Tippmann EM, Platz MS (2003) Org Lett 5:1305–1307CrossRefGoogle Scholar
  45. 45.
    Shi JC, Yang PY, Tong QS, Wu Y, Peng YR (2006) J Mol Catal A 259:7–10CrossRefGoogle Scholar
  46. 46.
    Anderson KW, Ikawa T, Tundel RE, Buchwald SL (2006) J Am Chem Soc 128:10694–10695CrossRefGoogle Scholar
  47. 47.
    Feuerstein M, Berthiol F, Doucet H, Santelli M (2002) Synlett 2002:1807–1810CrossRefGoogle Scholar
  48. 48.
    Ruiz JR, Jiménez-Sanchidrián C, Mora M (2006) J Fluor Chem 127:443–445CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.College of Chemistry and Chemical EngineeringGannan Normal UniversityGanzhouPeople’s Republic of China
  2. 2.College of Materials Science and EngineeringFujian Normal UniversityFuzhouPeople’s Republic of China
  3. 3.Fujian Key Laboratory of Polymer MaterialsFuzhouPeople’s Republic of China

Personalised recommendations