Catalysis Letters

, Volume 144, Issue 9, pp 1557–1567 | Cite as

Oxidative Esterification of Aldehydes to Esters over Anchored Phosphotungstates



12-Tungstophosphoric acid and lacunary phosphotungstate anchored to MCM-41 and ZrO2 were synthesized, characterized and used as bifunctional catalyst for oxidative esterification of benzaldehyde with methanol. The different aldehyde substrates study show excellent selectivity for esters, indicating the scope of the catalysts. A tentative reaction mechanism for oxidative esterification of aldehyde is also proposed.

Graphical Abstract


Phosphotungstates Anchored Oxidative esterification Aldehydes Esters 



We are thankful to Department of Science and technology (DST), Project. No.SR/S5/GC-01/2009, New Delhi, for the financial support. One of the authors Ms. Sukriti Singh is thankful to the same for fellowship.


  1. 1.
    Otera J (1993) Chem Rev 93:1449–1470CrossRefGoogle Scholar
  2. 2.
    Hudlicky M (1990) Oxidations in organic Chemistry. American Chemical society, Washington, DCGoogle Scholar
  3. 3.
    Taft RW Jr, Newman MS, Verhoek FH (1950) J Am Chem Soc 72:4511–4519CrossRefGoogle Scholar
  4. 4.
    Kovi KE, Wolf C (2008) Chem Eur J 14:6302–6315CrossRefGoogle Scholar
  5. 5.
    Abiko A, Roberts JC, Takemasa T, Masamune S (1986) Tetrahedron Lett 27:4537–4540CrossRefGoogle Scholar
  6. 6.
    Connor BO, Just G (1987) Tetrahedron Lett 28:3235–3236CrossRefGoogle Scholar
  7. 7.
    Travis BR, Sivakumar M, Hollist GO, Borhan B (2003) Org Lett 5:1031–1034CrossRefGoogle Scholar
  8. 8.
    Gopinath R, Barkakaty B, Talukdar B, Patel BK (2003) J Org Chem 68:2944–2947CrossRefGoogle Scholar
  9. 9.
    Kiyooka SI, Ueno M, Ishii E (2005) Tetrahedron Lett 46:4639–4642CrossRefGoogle Scholar
  10. 10.
    Suzuki K, Yamaguchi T, Matsushita K, Iitsuka C, Miura J, Akaogi T, Ishida H (2013) ACS Catal 3:1845–1849CrossRefGoogle Scholar
  11. 11.
    Chavan SP, Dantale SW, Govande CA, Venkatraman MS, Praveen C (2002) Synlett 2:267–268CrossRefGoogle Scholar
  12. 12.
    Marsden C, Taarning E, Hansen D, Johansen L, Klitgaard SK, Egeblad K, Christensen CH (2008) Green Chem 10:168–170CrossRefGoogle Scholar
  13. 13.
    Diaoa Y, Yana R, Zhanga S, Yanga P, Li Z, Wanga L, Donga H (2009) J Mol Catal A 303:35–42CrossRefGoogle Scholar
  14. 14.
    Chiarotto I, Feroci M, Sotgiu G, Inesi A (2013) Tetrahedron 69:8088–8095CrossRefGoogle Scholar
  15. 15.
    Sharma RK, Gulati S (2012) J Mol Catal A 363–364:291–303CrossRefGoogle Scholar
  16. 16.
    Caliman E, Dias JA, Dias SCL, Prado AGS (2005) Catal Today 107–108:816–825CrossRefGoogle Scholar
  17. 17.
    Sawant DP, Vinu A, Jacob NE, Lefebvre F, Halligudi SB (2005) J Catal 235:341–352CrossRefGoogle Scholar
  18. 18.
    Khdera AERS, Hassana HMA, El-Shall MS (2012) Appl Catal A 411–412:77–86CrossRefGoogle Scholar
  19. 19.
    Braga PRS, Costa AA, de Freitas EF, Rocha RO, de Macedo JL, Araujod AS, Dias JA, Dias SCL (2012) J Mol Catal A 358:99–105CrossRefGoogle Scholar
  20. 20.
    Bi L, Dickman M, Kortz U, Dix I (2005) Chem Commun 3962–3964Google Scholar
  21. 21.
    Pope MT (2004) Comprehensive Coordination Chemistry. II: From Biology to Nanotechnology, ed. A. G. Wedd, Vol 4 Elsevier, Oxford p. 635–678Google Scholar
  22. 22.
    Yamase T, Pope MT (2002) Polyoxometalate chemistry for nano-composite design. Kluwer, New YorkGoogle Scholar
  23. 23.
    Hill CL (1998) Chem Rev 98:1–2CrossRefGoogle Scholar
  24. 24.
    Kozhevnikov IV (1998) Chem Rev 98:171–198CrossRefGoogle Scholar
  25. 25.
    Mizuno N, Misono M (1998) Chem Rev 98:199–218CrossRefGoogle Scholar
  26. 26.
    Dupont P, Lefebvre F (1996) J Mol Catal A 114:209–213CrossRefGoogle Scholar
  27. 27.
    Okuhara T (2002) Chem Rev 102:3641–3666CrossRefGoogle Scholar
  28. 28.
    Massart R, Contant R, Fruchart JM, Clabrini JP, Fournier M (1977) Inorg Chem 16:2916–2921CrossRefGoogle Scholar
  29. 29.
    Brahmkhatri V, Patel A (2011) Appl Catal A 403:161–172CrossRefGoogle Scholar
  30. 30.
    Patel A, Singh S (2014) Fuel 118:358–364CrossRefGoogle Scholar
  31. 31.
    Shringarpure P, Patel A (2008) Dalton Trans 30:3953–3955CrossRefGoogle Scholar
  32. 32.
    Shringarpure P, Patel A (2010) Dalton Trans 29:2615–2621CrossRefGoogle Scholar
  33. 33.
    Shringarpure P, Patel A (2011) Chem Eng J 173:612–619CrossRefGoogle Scholar
  34. 34.
    Patel A, Singh S (2013) Ind Eng Chem Res 52:10896–10904CrossRefGoogle Scholar
  35. 35.
    Rafiee E, Eavani S (2013) J Mol Catal A 373:30–37CrossRefGoogle Scholar
  36. 36.
    Li H, Qiao Y, Hua L, Hou Z, Feng B, Pan Z, Hu Y, Wang X, Zhao X, Yu Y (2010) Chem Cat Chem 2:1165–1170Google Scholar
  37. 37.
    Brahmkhatri V, Patel A (2011) Ind Eng Chem Res 50:6620–6628CrossRefGoogle Scholar
  38. 38.
    Patel S, Purohit N, Patel A (2003) J Mol Catal A 192:195–202CrossRefGoogle Scholar
  39. 39.
    Sahu HR, Rao GR (2000) Bull Mater Sci 23:349–354CrossRefGoogle Scholar
  40. 40.
    Okhuhara T, Mizuno N, Misono M (1996) Adv Catal 41:133–252Google Scholar
  41. 41.
    Deltcheff CR, Fournier M, Franck R, Thouvenot R (1983) Inorg Chem 22:207–216CrossRefGoogle Scholar
  42. 42.
    Li B, Ma W, Liu J, Zuo S, Li X (2012) J Colloid Interface Sci 362:42–49CrossRefGoogle Scholar
  43. 43.
    Sheldon RA, Walau M, Arends IWEC, Schuchurdt U (1998) Acc Chem Res 31:485–493CrossRefGoogle Scholar
  44. 44.
    Gopinath R, Patel BK (2000) Org Lett 2:577–579CrossRefGoogle Scholar
  45. 45.
    Yoo WJ, Li CJ (2007) Tetrahedron Lett 48:1033–1035CrossRefGoogle Scholar
  46. 46.
    Mizuno N (2008) Mechanisms in homogeneous and heterogeneous epoxidation catalysts. S. Ted Oyama (ed), chap 4. Elseiver, New YorkGoogle Scholar
  47. 47.
    Dengel A. C, Griffith VVP, Parkin BC (1993) J Chem Soc Dalton Trans 2683–2688Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Polyoxometalates and Catalysis Laboratory, Department of Chemistry, Faculty of ScienceThe M.S. University of BarodaVadodaraIndia

Personalised recommendations