Catalysis Letters

, Volume 144, Issue 8, pp 1425–1432 | Cite as

Trends in Hydrodesulfurization Catalysis Based on Realistic Surface Models

  • Poul Georg Moses
  • Lars C. Grabow
  • Eva M. Fernandez
  • Berit Hinnemann
  • Henrik Topsøe
  • Kim G. Knudsen
  • Jens K. Nørskov


Trends in hydrodesulfurization (HDS) activity are investigated on the basis of surface properties calculated by density functional theory for a series of HDS catalysts. It is shown that approximately linear correlations exist between HS group binding energies and activation barriers of key elementary reactions in HDS of thiophene. These linear correlations are used to develop a simple kinetic model, which qualitatively describes experimental trends in activity. The kinetic model identifies the HS-binding energy as a descriptor of HDS activity. This insight contributes to understanding the effect of promotion and structure–activity relationships.

Graphical Abstract


DFT Trends HDS Hydrodesulfurization Promotion Scaling relations Sulfides 



The authors acknowledge support from The Department of Energy-Basic Energy Sciences (DOE-BES) through the SUNCAT FWP (PGM, LCG, JKN), and the Lundbeck Foundation (EF).


  1. 1.
    Topsøe H, Clausen BS, Massoth FE (1996) Hydrotreating catalysis. Springer, BerlinCrossRefGoogle Scholar
  2. 2.
    Liu P, Rodriguez JA, Asakura T, Gomes J, Nakamura K (2005) Desulfurization reactions on Ni2P(001) and α-Mo2C(001) surfaces: complex role of P and C sites. J Phys Chem B 109:4575–4583CrossRefGoogle Scholar
  3. 3.
    Liu P, Rodriguez JA, Muckerman JT (2004) The Ti8C12 metcar: a new model catalyst for hydrodesulfurization. J Phys Chem B 108:18796–18798CrossRefGoogle Scholar
  4. 4.
    Rodriguez JA, Liu P, Takahashi Y, Nakamura K, Vines F, Illas F (2010) Desulfurization reactions on surfaces of metal carbides: photoemission and density-functional studies. Top Catal 53:393–402CrossRefGoogle Scholar
  5. 5.
    Song C (2003) An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel. Catal Today 86:211–263CrossRefGoogle Scholar
  6. 6.
    Neurock M, van Santen RA (1994) Theory of carbon–sulfur bond activation by small metal sulfide particles. J Am Chem Soc 116:4427–4439CrossRefGoogle Scholar
  7. 7.
    Coulier L, de Beer VHJ, van Veen JAR, Niemantsverdriet JW (2001) Correlation between hydrodesulfurization activity and order of Ni and Mo sulfidation in planar silica-supported NiMo catalysts: the effect of chelating agents. J Catal 197:26–33CrossRefGoogle Scholar
  8. 8.
    Coulier L, Kishan G, van Veen JAR, Niemantsverdriet JW (2002) Influence of support-interaction on the sulfidation behavior and hydrodesulfurization activity of Al2O3-supported W, CoW, and NiW model catalysts. J Phys Chem B 106:5897–5906CrossRefGoogle Scholar
  9. 9.
    Kishan G, Coulier L, de Beer VHJ, van Veen JAR, Niemantsverdriet JW (2000) Sulfidation and thiophene hydrodesulfurization activity of nickel tungsten sulfide model catalysts, prepared without and with chelating agents. J Catal 196:180–189CrossRefGoogle Scholar
  10. 10.
    Moses PG, Hinnemann B, Topsøe H, Nørskov JK (2007) The hydrogenation and direct desulfurization reaction pathway in thiophene hydrodesulfurization over MoS2 catalysts at realistic conditions: a density functional study. J Catal 248:188–203CrossRefGoogle Scholar
  11. 11.
    Moses PG, Hinnemann B, Topsøe H, Nørskov JK (2008) The hydrogenation and direct desulfurization reaction pathway in thiophene hydrodesulfurization over MoS2 catalysts at realistic conditions: a density functional study (vol 248, pg 188, 2007). J Catal 260:202–203CrossRefGoogle Scholar
  12. 12.
    Moses PG, Hinnemann B, Topsøe H, Nørskov JK (2009) The effect of co-promotion on MoS2 catalysts for hydrodesulfurization of thiophene: a density functional study. J Catal 268:201–208CrossRefGoogle Scholar
  13. 13.
    Besenbacher F, Brorson M, Clausen BS, Helveg S, Hinnemann B, Kibsgaard J, Lauritsen JV, Moses PG, Nørskov JK, Topsøe H (2008) Recent STM, DFT and HAADF-STEM studies of sulfide-based hydrotreating catalysts: insight into mechanistic, structural and particle size effects. Catal Today 130:86–96CrossRefGoogle Scholar
  14. 14.
    Lauritsen JV, Bollinger MV, Lægsgaard E, Jacobsen KW, Nørskov JK, Clausen BS, Topsøe H, Besenbacher F (2004) Atomic-scale insight into structure and morphology changes of MoS2 nanoclusters in hydrotreating catalysts. J Catal 221:510–522CrossRefGoogle Scholar
  15. 15.
    Lauritsen JV, Helveg S, Lægsgaard E, Stensgaard I, Clausen BS, Topsøe H, Besenbacher F (2001) Atomic-scale structure of Co–Mo–S nanoclusters in hydrotreating catalysts. J Catal 197:1–5CrossRefGoogle Scholar
  16. 16.
    Daudin A, Lamic AE, Perot G, Brunet S, Raybaud P, Bouchy C (2008) Microkinetic interpretation of HDS/HYDO selectivity of the transformation of a model FCC gasoline over transition metal sulfides. Catal Today 130:221–230CrossRefGoogle Scholar
  17. 17.
    Schweiger H, Raybaud P, Toulhoat H (2002) Promoter sensitive shapes of Co(Ni)MoS nanocatalysts in sulfo-reductive conditions. J Catal 212:33–38CrossRefGoogle Scholar
  18. 18.
    Hansen LP, Ramasse QM, Kisielowski C, Brorson M, Johnson E, Topsøe H, Helveg S (2011) Atomic-scale edge structures on industrial-style MoS2 nanocatalysts. Angew Chem Int Ed 50:10153–10156Google Scholar
  19. 19.
    Kisielowski C, Ramasse QM, Hansen LP, Brorson M, Carlsson A, Molenbroek AM, Topsøe H, Helveg S (2010) Imaging MoS2 nanocatalysts with single-atom sensitivity. Angew Chem Int Ed 49:2708–2710Google Scholar
  20. 20.
    Cesano F, Bertarione S, Piovano A, Agostini G, Rahman MM, Groppo E, Bonino F, Scarano D, Lamberti C, Bordiga S, Montanari L, Bonoldi L, Millini R, Zecchina A (2011) Model oxide supported MoS2 HDS catalysts: structure and surface properties. Catal Sci Technol 1:123–136CrossRefGoogle Scholar
  21. 21.
    Sun Y, Prins R (2009) Mechanistic studies and kinetics of the hydrodesulfurization of dibenzothiophene on Co–MoS2/γ-Al2O3. J Catal 267:193–201CrossRefGoogle Scholar
  22. 22.
    Wang H, Prins R (2009) Hydrodesulfurization of dibenzothiophene, 4,6-dimethyldibenzothiophene, and their hydrogenated intermediates over Ni–MoS2/γ-Al2O3. J Catal 264:31–43CrossRefGoogle Scholar
  23. 23.
    Wang H, Prins R (2008) Hydrodesulfurization of dibenzothiophene and its hydrogenated intermediates over sulfided Mo/γ-Al2O3. J Catal 258:153–164CrossRefGoogle Scholar
  24. 24.
    Pecoraro TA, Chianelli RR (1981) Hydrodesulfurization catalysis by transition-metal sulfides. J Catal 67:430–445CrossRefGoogle Scholar
  25. 25.
    Hermann N, Brorson M, Topsøe H (2000) Activities of unsupported second transition series metal sulfides for hydrodesulfurization of sterically hindered 4,6-dimethyldibenzothiophene and of unsubstituted dibenzothiophene. Catal Lett 65:169–174CrossRefGoogle Scholar
  26. 26.
    Lacroix M, Boutarfa N, Guillard C, Vrinat M, Breysse M (1989) Hydrogenating properties of unsupported transition-metal sulfides. J Catal 120:473–477CrossRefGoogle Scholar
  27. 27.
    Vissers JPR, Groot CK, Vanoers EM, Debeer VHJ, Prins R (1984) Carbon-supported transition-metal sulfides. Bull Soc Chim Belg 93:813–821CrossRefGoogle Scholar
  28. 28.
    Burdett JK, Chung JT (1990) Volcano plots, hydrodesulfurization and surface atom pair potentials. Surf Sci 236:L353–L357CrossRefGoogle Scholar
  29. 29.
    Nørskov JK, Clausen BS, Topsøe H (1992) Understanding the trends in the hydrodesulfurization activity of the transition metal sulfides. Catal Lett 13:1–8CrossRefGoogle Scholar
  30. 30.
    Topsøe H, Clausen BS, Topsøe NY, Nørskov JK, Ovesen CV, Jacobsen CJH (1995) The bond-energy model for hydrotreating reactions—theoretical and experimental aspects. Bull Soc Chim Belg 104:283–291CrossRefGoogle Scholar
  31. 31.
    Raybaud P, Kresse G, Hafner J, Toulhoat H (1997) Ab initio density functional studies of transition-metal sulphides: I. Crystal structure and cohesive properties. J Phys Condens Matter 9:11085–11106CrossRefGoogle Scholar
  32. 32.
    Toulhoat H, Raybaud P (2003) Kinetic interpretation of catalytic activity patterns based on theoretical chemical descriptors. J Catal 216:63–72CrossRefGoogle Scholar
  33. 33.
    Toulhoat H, Raybaud P, Kasztelan S, Kresse G, Hafner J (1999) Transition metals to sulfur binding energies relationship to catalytic activities in HDS: back to Sabatier with first principle calculations. Catal Today 50:629–636CrossRefGoogle Scholar
  34. 34.
    Raybaud P (2007) Understanding and predicting improved sulfide catalysts: insights from first principles modeling. Appl Catal A 322:76–91CrossRefGoogle Scholar
  35. 35.
    Chianelli RR, Berhault G, Raybaud P, Kasztelan S, Hafner J, Toulhoat H (2002) Periodic trends in hydrodesulfurization: in support of the Sabatier principle. Appl Catal A 227:83–96CrossRefGoogle Scholar
  36. 36.
    Gomez-Balderas R, Oviedo-Roa R, Martinez-Magadan JM, Amador C, Dixon DA (2002) A comparative DFT study of the catalytic activity of the 3d transition metal sulphides surfaces. Surf Sci 518:163–173CrossRefGoogle Scholar
  37. 37.
    Oviedo-Roa R, Martinez-Magadan JM, Illas F (2006) Correlation between electronic properties and hydrodesulfurization activity of 4d-transition-metal sulfides. J Phys Chem B 110:7951–7966CrossRefGoogle Scholar
  38. 38.
    Fernandez EM, Moses PG, Toftelund A, Hansen HA, Martinez JI, Abild-Pedersen F, Kleis J, Hinnemann B, Rossmeisl J, Bligaard T, Nørskov JK (2008) Scaling relationships for adsorption energies on transition metal oxide, sulfide, and nitride surfaces. Angew Chem Int Ed. 47:4683–4686CrossRefGoogle Scholar
  39. 39.
    Bahn SR, Jacobsen KW (2002) An object-oriented scripting interface to a legacy electronic structure code. Comput Sci Eng 4:56–66CrossRefGoogle Scholar
  40. 40.
    Hammer B, Hansen LB, Nørskov JK (1999) Improved adsorption energetics within density-functional theory using revised Perdew–Burke–Ernzerhof functionals. Phys Rev B 59:7413–7421CrossRefGoogle Scholar
  41. 41.
    Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188–5192CrossRefGoogle Scholar
  42. 42.
    Laasonen K, Pasquarello A, Car R, Lee C, Vanderblit D (1993) Car–Parrinello molecular-dynamics with Vanderbilt ultrasoft pseudopotentials. Phys Rev B 47:10142–10153CrossRefGoogle Scholar
  43. 43.
    Troullier N, Martins JL (1991) Efficient pseudopotentials for plane-wave calculations. Phys Rev B 43:1993–2006CrossRefGoogle Scholar
  44. 44.
    Vanderbilt D (1990) Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B 41:7892–7895CrossRefGoogle Scholar
  45. 45.
    Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38CrossRefGoogle Scholar
  46. 46.
    Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Atoms, molecules, solids, and surfaces—applications of the generalized gradient approximation for exchange and correlation. Phys Rev B 46:6671–6687CrossRefGoogle Scholar
  47. 47.
    Jonsson H, Mills G, Jacobsen KW (1997) Classical and quantum dynamics in condensed phase systems. Enrico Fermi Summer School, World Scientific, SingaporeGoogle Scholar
  48. 48.
    Joshi YV, Ghosh P, Venkataraman PS, Delgass WN, Thomson KT (2009) Electronic descriptors for the adsorption energies of sulfur-containing molecules on Co/MoS2, using DFT calculations. J Phys Chem C 113:9698–9709CrossRefGoogle Scholar
  49. 49.
    Bollinger MV, Jacobsen KW, Nørskov JK (2003) Atomic and electronic structure of MoS2 nanoparticles. Phys Rev B 67:085410CrossRefGoogle Scholar
  50. 50.
    Cristol S, Paul JF, Payen E, Bougeard D, Clemendot S, Hutschka F (2002) Theoretical study of the MoS2(100) surface: a chemical potential analysis of sulfur and hydrogen coverage. 2. Effect of the total pressure on surface stability. J Phys Chem B 106:5659–5667CrossRefGoogle Scholar
  51. 51.
    Bligaard T, Nørskov JK (2008) Chemical bonding at surfaces and interfaces. Elsevier, AmsterdamGoogle Scholar
  52. 52.
    Grabow L, Hvolbæk B, Nørskov J (2010) Understanding trends in catalytic activity: the effect of adsorbate–adsorbate interactions for CO oxidation over transition metals. Top Catal 53:298–310CrossRefGoogle Scholar
  53. 53.
    Falsig H, Bligaard T, Christensen CH, Nørskov JK (2007) Direct NO decomposition over stepped transition-metal surfaces. Pure Appl Chem 79:1895–1903CrossRefGoogle Scholar
  54. 54.
    Falsig H, Hvolbæk B, Kristensen IS, Jiang T, Bligaard T, Christensen CH, Nørskov JK (2008) Trends in the catalytic CO oxidation activity of nanoparticles. Angew Chem Int Ed 47:4835–4839CrossRefGoogle Scholar
  55. 55.
    Bligaard T, Nørskov JK, Dahl S, Matthiesen J, Christensen CH, Sehested J (2004) The Bronsted–Evans–Polanyi relation and the volcano curve in heterogeneous catalysis. J Catal 224:206–217CrossRefGoogle Scholar
  56. 56.
    Topsøe N-Y, Tuxen A, Hinnemann B, Lauritsen JV, Knudsen KG, Besenbacher F, Topsøe H (2011) Spectroscopy, microscopy and theoretical study of NO adsorption on MoS2 and Co–Mo–S hydrotreating catalysts. J Catal 279:337–351CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Poul Georg Moses
    • 1
    • 2
    • 4
  • Lars C. Grabow
    • 1
    • 2
    • 5
  • Eva M. Fernandez
    • 3
  • Berit Hinnemann
    • 4
  • Henrik Topsøe
    • 4
  • Kim G. Knudsen
    • 4
  • Jens K. Nørskov
    • 1
    • 2
  1. 1.SUNCAT Center for Interface Science and Catalysis, Department of Chemical EngineeringStanford UniversityStanfordUSA
  2. 2.SLAC National Accelerator LaboratoryMenlo ParkUSA
  3. 3.Center for Atomic-scale Materials Design (CAMD) Department of PhysicsTechnical University of DenmarkKgs. LyngbyDenmark
  4. 4.Haldor Topsøe A/SKgs. LyngbyDenmark
  5. 5.Department of Chemical and Biomolecular EngineeringUniversity of HoustonHoustonUSA

Personalised recommendations