Advertisement

Catalysis Letters

, Volume 144, Issue 7, pp 1258–1267 | Cite as

Iron and Palladium(II) Phthalocyanines as Recyclable Catalysts for Reduction of Nitroarenes

  • Praveen Kumar Verma
  • Manju Bala
  • Kavita Thakur
  • Upendra Sharma
  • Neeraj Kumar
  • Bikram Singh
Article

Abstract

Iron(II) and palladium(II) phthalocyanines have been established as recyclable heterogeneous catalysts for the reduction of aromatic nitro compounds to corresponding amines using diphenylsilane/sodium borohydride as hydrogen sources in ethanol. Various reducible functional groups, such as acetyl, ester, cyano, amide, sulphonamide and carboxylic acid etc. were well tolerated, and the methods were applicable up to gram scale. Mechanistic studies showed that reduction of nitro group proceed through direct (nitroso) pathway and possibly iron or palladium phthalocyanines activates nitro group for reduction. FePc and PdPc also catalyzed the generation of hydrogen from the combination of diphenylsilane/sodium borohydride and ethanol.

Graphical Abstract

Iron and palladium (II) phthalocyanines has been established as an efficient recyclable catalytic systems for reduction of nitroarenes with green solvent system. Various nitro substituted aromatics and heteroaromatics has been successfully reduced to corresponding amines in good to excellent yields. The present methods have also been productively applicable for gram scale reactions.

Keywords

Iron(II) phthalocyanine Palladium(II) phthalocyanine Diphenyl silane Sodium borohydride Nitro compounds 

Notes

Acknowledgments

Authors are grateful to Director of the institute for providing necessary facilities. Financial support received from CSIR-India (fellowship to P. K. V) and DST under Fast Track Scheme (U. S.) is gratefully acknowledged.

Supplementary material

10562_2014_1269_MOESM1_ESM.doc (5.8 mb)
Supplementary material 1 (DOC 5981 kb)

References

  1. 1.
    Rylander PN (1985) Hydrogenation Methods. Academic Press, London 104Google Scholar
  2. 2.
    Nishimura S (2001) Handbook of Heterogeneous Catalytic Hydrogenation for Organic Synthesis. Wiley, Chichester 315Google Scholar
  3. 3.
    Adams JP, Paterson JR (2000) J Chem Soc Perkin Trans 1:3695CrossRefGoogle Scholar
  4. 4.
    Kabalka GW, Verma RS (1992) In: Comprehensive Organic Synthesis. Pergamon, Oxford 363Google Scholar
  5. 5.
    Dale DJ, Dunn PJ, Golighty C, Hughes ML, Levett PC, Pearce AK, Searle PM, Ward G, Wood AS (2000) Org Process Res Dev 4:17CrossRefGoogle Scholar
  6. 6.
    Brickner SJ, Hutchinson DK, Barbachyn MR, Manninen PR, Ulanowicz DA, Garmon SA, Grega KC, Hendges SK, Toops DS, Ford CW, Zurenko GE (1996) J Med Chem 39:673CrossRefGoogle Scholar
  7. 7.
    Al-Farhan E, Deininger DD, McGhie S, Callaghan JO, Robertson MS, Rodgers K, Rout SJ, Singh H, Tung RD (1999) PCT Int. Appl. WO99/48885Google Scholar
  8. 8.
    Prasad A, Sharma ML, Kanwar S, Rathee R, Sharma SD (2005) J Sci Ind Res 64:756Google Scholar
  9. 9.
    Blaser HU, Siegrist U, Studer M (2001) In: Fine chemicals through heterogenous catalysis. Wiley-VCH, Weinheim 389Google Scholar
  10. 10.
    Blaser HU, Steiner H, Studer M (2009) ChemCatChem 1:210CrossRefGoogle Scholar
  11. 11.
    Corma A, Serna P, Concepcion P, Calvino J (2008) J Am Chem Soc 130:8748CrossRefGoogle Scholar
  12. 12.
    Doxsee KM, Feigel M, Stewart KD, Canary JW, Knobler CB, Cram DJ (1987) J Am Chem Soc 109:3098CrossRefGoogle Scholar
  13. 13.
    Tormo J, Hays DS, Fu GC (1998) J Org Chem 63:5296; c) Zhou Y, Li J, Liu H, Zhao Z, Jiang H (2006). Tetrahedron Lett 47:8511Google Scholar
  14. 14.
    Sharma U, Kumar P, Kumar N, Kumar V, Singh B (2010) Adv Synth Catal 352:1834CrossRefGoogle Scholar
  15. 15.
    Sahiner N, Ozay H, Ozay O, Aktas N (2010) Appl Catal B Env 101:137CrossRefGoogle Scholar
  16. 16.
    Matthews JM, Greco MN, Hecker LR, Hoekstra WJ, Rade-Gordon P, de Garavilla L, Demarest KT, Ericson K, Gunnet KW, Hageman W, Look R, Moore JB, Maryanoff BE (2003) Bioorg Med Chem Lett 13:753CrossRefGoogle Scholar
  17. 17.
    Kim Y, Nam NH, You YJ, Ahn BZ (2002) Bioorg Med Chem Lett 12:719CrossRefGoogle Scholar
  18. 18.
    Edwards JP, Zhi L, Pooley CLF, Tegley CM, West SJ, Wang MW, Gottardis MM, Pathirana C, Schrader WT, Jones TK (1998) J Med Chem 41:2779CrossRefGoogle Scholar
  19. 19.
    Neidlein R, Christen D (1986) Helv Chim Acta 69:1623CrossRefGoogle Scholar
  20. 20.
    Liu Y, Lu Y, Prashad M, Repic O, Blacklock TJ (2005) Adv Synth Catal 347:217CrossRefGoogle Scholar
  21. 21.
    Corma A, Conceptcion P, Serna P (2007) Angew Chem Int Ed 46:7266CrossRefGoogle Scholar
  22. 22.
    He L, Wang LC, Sun H, Ni J, Cao Y, He HY, Fan KN (2009) Angew Chem Int Ed 48:9538CrossRefGoogle Scholar
  23. 23.
    Corma A, Serna P (2006) Science 313:332CrossRefGoogle Scholar
  24. 24.
    Corma A, Serna P, Garcia H (2007) J Am Chem Soc 129:6358CrossRefGoogle Scholar
  25. 25.
    Park S, Lee IS, Park J (2013) Org Biomol Chem 11:395CrossRefGoogle Scholar
  26. 26.
    Mitsudome T, Kaneda K (2013) Green Chem 15:2636CrossRefGoogle Scholar
  27. 27.
    Zhang Y, Cui X, Shi F, Deng Y (2012) Chem Rev 112:2467CrossRefGoogle Scholar
  28. 28.
    Stratakis M, Garcia H (2012) Chem Rev 112:4469CrossRefGoogle Scholar
  29. 29.
    Gkizis PL, Stratakis M, Lykakis IN (2013) Catal Commun 36:48CrossRefGoogle Scholar
  30. 30.
    Lipowitz J, Bowman SA (1973) J Org Chem 38:162CrossRefGoogle Scholar
  31. 31.
    Jovel I, Golomba L, Fleisher M, Popelis J, Grinberga S, Lukevics E (2004) Chem Heterocycl Comp 40:701CrossRefGoogle Scholar
  32. 32.
    Rahaim Jr RJ, Maleczka Jr. RE (2006) Synthesis 3316Google Scholar
  33. 33.
    Rahaim RJ Jr, Maleczka RE Jr (2005) Org Lett 7:5087CrossRefGoogle Scholar
  34. 34.
    Banik BK, Mukhopadhyay C, Venkatraman MS, Becker FF (1998) Tetrahedron Lett 39:7243CrossRefGoogle Scholar
  35. 35.
    Yu C, Liu B, Hu L (2001) J Org Chem 66:919CrossRefGoogle Scholar
  36. 36.
    Basu MK, Becker FF, Banik FF (2000) Tetrahedron Lett 41:5603CrossRefGoogle Scholar
  37. 37.
    Spencer J, Anjum N, Patel H, Rathnam RP, Verma J (2007) Synlett 2557Google Scholar
  38. 38.
    Spencer J, Rathnam RP, Patel H, Anjum N (2008) Tetrahedron 64:10195CrossRefGoogle Scholar
  39. 39.
    de Noronha RG, Romao CC, Fernandes AJ (2009) J Org Chem 74:6960CrossRefGoogle Scholar
  40. 40.
    Andrianov KA, Sidorov VI, Filimonov MI (1977) Zh Obshch Khim 47:485Google Scholar
  41. 41.
    Brinkman HR, Miles WH, Hilborn MD, Smith MC (1996) Synth Commun 26:973CrossRefGoogle Scholar
  42. 42.
    Fan GY, Zhang L, Fu HY, Yuan ML, Li RX, Chen H, Li XJ (2010) Catal Commun 11:451CrossRefGoogle Scholar
  43. 43.
    Enthaler S, Junge K, Beller M (2008) Angew Chem Int Ed 47:3317CrossRefGoogle Scholar
  44. 44.
    Gaillard S, Renaud JL (2008) ChemSusChem 1:505CrossRefGoogle Scholar
  45. 45.
    Junge K, Wendt B, Shaikh N, Beller M (2010) Chem Commun 46:1769CrossRefGoogle Scholar
  46. 46.
    Pehlivan L, Metay E, Laval S, Dayoub W, Demonchaux P, Mignani G, Lemaire M (2011) Tetrahedron 67:1971CrossRefGoogle Scholar
  47. 47.
    Cantillo D, Baghbanzadeh M, Kappe CO (2012) Angew Chem Int Ed 51:10190CrossRefGoogle Scholar
  48. 48.
    Wienhofer G, Sorribes I, Boddien A, Westerhaus F, Junge K, Junge H, Llusar R, Beller M (2011) J Am Chem Soc 133:12875CrossRefGoogle Scholar
  49. 49.
    Shi Q, Lu R, Lu L, Fu X, Zhao D (2007) Adv Synth Catal 349:1877CrossRefGoogle Scholar
  50. 50.
    Plietker B (2008) Iron catalysis in organic chemistry. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  51. 51.
    Nahra F, Mace Y, Lambin D, Riant O (2013) Angew Chem Int Ed 52:3208CrossRefGoogle Scholar
  52. 52.
    Wang DS, Wang DW, Zhou YG (2011) Synlett 947Google Scholar
  53. 53.
    Bae JW, Cho YJ, Lee SH, Yoon COM, Yoon CM (2000) Chem Commun 1857Google Scholar
  54. 54.
    Franzoni I, Mazet C (2014) Org Biomol Chem 12:233CrossRefGoogle Scholar
  55. 55.
    Chen QA, Ye ZS, Duan Y, Zhou YG (2013) Chem Soc Rev 42:497CrossRefGoogle Scholar
  56. 56.
    Sorokin AB (2013) Chem Rev 13:8152CrossRefGoogle Scholar
  57. 57.
    Verma PK, Sharma U, Bala M, Kumar N, Singh B (2013) RSC Adv 3:895CrossRefGoogle Scholar
  58. 58.
    Sharma U, Kumar N, Verma PK, Kumar V, Singh B (2012) Green Chem 14:2289CrossRefGoogle Scholar
  59. 59.
    Sharma U, Verma PK, Kumar N, Kumar V, Bala M, Singh B (2011) Chem Eur J 17:5903CrossRefGoogle Scholar
  60. 60.
    Bala M, Verma PK, Kumar N, Sharma U, Singh B (2013) Canad J Chem 91:732CrossRefGoogle Scholar
  61. 61.
    Bala M, Verma PK, Sharma U, Kumar N, Singh B (2013) Green Chem 15:1687CrossRefGoogle Scholar
  62. 62.
    Verma PK, Sharma U, Kumar N, Bala M, Kumar V, Singh B (2012) Catal Lett 142:907CrossRefGoogle Scholar
  63. 63.
    Kumar V, Sharma U, Verma PK, Kumar N, Singh B (2012) Adv Synth Catal 354:870CrossRefGoogle Scholar
  64. 64.
    Kantam ML, Bandyopadhyay P, Rahman A (1998) J Mol Catal A: Chem 133:293CrossRefGoogle Scholar
  65. 65.
    McLaughlin MA, Barnes DM (2006) Tetrahedron Lett 47:9095CrossRefGoogle Scholar
  66. 66.
    Tafesh AM, Weiguny J (1996) Chem Rev 96:2035CrossRefGoogle Scholar
  67. 67.
    Takasaki M, Motoyama Y, Higashi K, Yoon, Mochida I, Nagasimha H (2008) Org Lett 10:1601CrossRefGoogle Scholar
  68. 68.
    Sorribes I, Wienhofer G, Vicent C, Junge K, Llusar R, Beller M (2012) Angew Chem Int Ed 51:7794CrossRefGoogle Scholar
  69. 69.
    Westerhaus FA, Jagadeesh RV, Wienhofer G, Pohl MM, Radnik J, Surkus AE, Robeah J, Junge K, Junge H, Nielsen M, Bruckner A, Beller M (2013) Nature Chem 5:537CrossRefGoogle Scholar
  70. 70.
    Lee JG, Choi KI, Koh HY, Kim Y, Kang Y, Cho YS (2001) Synthesis 81Google Scholar
  71. 71.
    Chandrasekhar S, Prakash SJ, Rao CL (2006) J Org Chem 71:2196CrossRefGoogle Scholar
  72. 72.
    Iyer S, Kulkarni GM (2004) Synth Commun 34:721CrossRefGoogle Scholar
  73. 73.
    He D, Shi H, Wu Y, Xu BO (2007) Green Chem 9:849CrossRefGoogle Scholar
  74. 74.
    Weekes AA, Westwell AD (2009) Curr Med Chem 16:2430CrossRefGoogle Scholar
  75. 75.
    Horton DA, Bourne GT, Smythe MY (2003) Chem Rev 103:893CrossRefGoogle Scholar
  76. 76.
    Kuhler TC, Swanson M, Shcherbuchin V, Larsson H, Mellgard B, Sjostrom JE (1998) J Med Chem 41:1777CrossRefGoogle Scholar
  77. 77.
    Haber F (1898) Z Elektrochem 22:506Google Scholar
  78. 78.
    Kruger A, Albrecht M (2012) Chem Eur J 18:652CrossRefGoogle Scholar
  79. 79.
    Mukharjee D, Thompson RR, Ellern A, Sadow AD (2011) ACS Catal 1:698CrossRefGoogle Scholar
  80. 80.
    Weickgenannt A, Mewald M, Muesmann TWT, Oestreich M (2010) Angew Chem Int Ed 49:2223CrossRefGoogle Scholar
  81. 81.
    Ito H, Takagi K, Miyahara T, Sawamura M (2005) Org Lett 7:3001CrossRefGoogle Scholar
  82. 82.
    Ito H, Takagi K, Miyahara T, Sawamura M (2005) Org Lett 7:1869CrossRefGoogle Scholar
  83. 83.
    Khalimon AY, Simionescu R, Nikonov GI (2011) J Am Chem Soc 133:7033CrossRefGoogle Scholar
  84. 84.
    Luo XL, Crabtree RH (1989) J Am Chem Soc 111:2527CrossRefGoogle Scholar
  85. 85.
    Bialek B, Lee J (2007) J Korean Phys Soc 51:1366CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Praveen Kumar Verma
    • 1
    • 2
  • Manju Bala
    • 1
    • 2
  • Kavita Thakur
    • 1
  • Upendra Sharma
    • 1
    • 3
  • Neeraj Kumar
    • 1
  • Bikram Singh
    • 1
    • 2
  1. 1.Natural Plant Products DivisionCSIR-Institute of Himalayan Bioresource TechnologyPalampurIndia
  2. 2.Academy of Scientific & Innovative ResearchCSIR-Institute of Himalayan Bioresource TechnologyPalampurIndia
  3. 3.Department of ChemistryKorea Advanced Institute of Science & Technology (KAIST)DaejeonSouth Korea

Personalised recommendations