Catalysis Letters

, Volume 144, Issue 6, pp 1088–1095 | Cite as

Fischer–Tropsch Synthesis: Effect of Reaction Temperature for Aqueous-Phase Synthesis Over a Platinum Promoted Co/Alumina Catalyst

  • Venkat Ramana Rao Pendyala
  • Wilson D. Shafer
  • Gary Jacobs
  • Burtron H. Davis


The effect of reaction temperature on the performance of a traditional Fischer–Tropsch cobalt catalyst (0.5 % Pt–25 % Co/Al2O3) was investigated during aqueous-phase Fischer–Tropsch synthesis (AFTS) using a 1 L stirred tank reactor in the batch mode of operation. The CO conversion rate of the catalyst was found to increase monotonically with increasing reaction temperature. At lower temperatures oxygenate selectivity was high. With increasing the reaction temperature, oxygenate selectivity decreased and the selectivity to hydrocarbons increased. Carbon dioxide and methane selectivity also increased with reaction temperature and the corresponding higher hydrocarbon (C5+) selectivity decreased. For comparison, the CO conversion rate of the catalyst was also tested using C30 oil as a solvent, and similar activation and reaction conditions were utilized in the batch mode of operation. Slightly higher CO rate was observed with C30 oil as a solvent than with the water.

Graphical Abstract


Aqueous-phase Fischer–Tropsch synthesis Traditional cobalt catalyst Comparison between aqueous and non-aqueous solvents Activity Product selectivity 



This work was supported by the Commonwealth of Kentucky.


  1. 1.
    Cano AL, Cagnoli MV, Bengoa JF, Alvarez AN, Marchetti SG (2011) J Catal 278:310CrossRefGoogle Scholar
  2. 2.
    Gonzalez O, Perez H, Navarro P, Almeida LC, Pacheco JG, Montes M (2009) Catal Today 148:140CrossRefGoogle Scholar
  3. 3.
    Luque R, de la Osa AR, Campelo JM, Romero AA, Valverde JL, Sanchez P (2012) Energy Environ Sci 5:5186CrossRefGoogle Scholar
  4. 4.
    Schulz H (1999) Appl Catal A Gen 186:3CrossRefGoogle Scholar
  5. 5.
    Reuel RC, Bartholomew CH (1984) J Catal 85:78CrossRefGoogle Scholar
  6. 6.
    Schulz H, van Steen E, Claeys M (1994) Stud Surf Sci Catal 81:204Google Scholar
  7. 7.
    Iglesia E, Soled SL, Fiato RA (1992) J Catal 137:212CrossRefGoogle Scholar
  8. 8.
    Iglesia E (1997) Appl Catal A Gen 161:59CrossRefGoogle Scholar
  9. 9.
    Khodakov AY, Chu W, Fongarland P (2007) Chem Rev 107:1692CrossRefGoogle Scholar
  10. 10.
    Zhang Q, Kang J, Wang Y (2010) ChemCatChem 2:1030CrossRefGoogle Scholar
  11. 11.
    Oukaci R, Singleton AH, Goodwin JG Jr (1999) Appl Catal A Gen 186:129CrossRefGoogle Scholar
  12. 12.
    Dry ME (2002) Catal Today 71:227CrossRefGoogle Scholar
  13. 13.
    Davis BH (2005) Top Catal 32:143CrossRefGoogle Scholar
  14. 14.
    Dalai AK, Davis BH (2008) Appl Catal A Gen 348:1CrossRefGoogle Scholar
  15. 15.
    van Steen E, Schulz H (1999) Appl Catal A Gen 186:309CrossRefGoogle Scholar
  16. 16.
    Bertole CJ, Mims CA, Kiss G (2002) J Catal 210:84CrossRefGoogle Scholar
  17. 17.
    Claeys M, van Steen E (2002) Catal Today 71:419CrossRefGoogle Scholar
  18. 18.
    Pendyala VRR, Shafer WD, Davis BH (2013) Catal Lett 143:895CrossRefGoogle Scholar
  19. 19.
    Xiao C, Cai Z, Wang T, Kou Y, Yan N (2008) Angew Chem Int Ed 47:746CrossRefGoogle Scholar
  20. 20.
    Wang H, Zhou W, Liu J, Si R, Sun G, Zhong M, Su H, Zhao H, Rodriguez JA, Pennycook SJ, Idrobo J, Li W, Kou Y, Ma D (2013) J Am Chem Soc 135:4149CrossRefGoogle Scholar
  21. 21.
    Quek X, Guan Y, van Santen RA, Hensen EJM (2011) ChemCatChem 3:1735CrossRefGoogle Scholar
  22. 22.
    Liu L, Sun G, Wang C, Yang J, Xiao C, Wang H, Ma D, Kou Y (2012) Catal Today 183:136CrossRefGoogle Scholar
  23. 23.
    Wang C, Zhao H, Wang H, Liu L, Xiao C, Ma D (2012) Catal Today 183:143CrossRefGoogle Scholar
  24. 24.
    Shi D, Faria JA, Rownaghi AA, Huhnke RL, Resasco DE (2013) Energy Fuels 27:6118CrossRefGoogle Scholar
  25. 25.
    Hibbitts DD, Loveless BT, Neurock M, Iglesia E (2013) Angew Chem Int Ed 52:12273CrossRefGoogle Scholar
  26. 26.
    Espinoza RL, Visagie JL, van Berge PJ, Bolder FH (1998) U.S. Patent 5,733,839Google Scholar
  27. 27.
    Li J, Zhan X, Zhang Y, Jacobs G, Das TK, Davis BH (2002) Appl Catal A Gen 228:203CrossRefGoogle Scholar
  28. 28.
    Deitz WA (1967) J Gas Chromatogr 5:68CrossRefGoogle Scholar
  29. 29.
    Jacobs G, Zhang Y, Das TK, Li J, Patterson PM, Davis BH (2001) Deactivation of a Ru promoted Co/Al2O3 catalyst for FT synthesis. In: Roberts GW, Davis BH (eds) Stud Surf Sci Catal, Elsevier, Amsterdam, 139: 415Google Scholar
  30. 30.
    Jacobs G, Das TK, Zhang YQ, Li J, Racoillet G, Davis BH (2002) Appl Catal A: Gen 233:263CrossRefGoogle Scholar
  31. 31.
    Jacobs G, Ji Y, Davis BH, Cronauer DC, Kropf AJ, Marshall CL (2007) Appl Catal A: Gen 333:177CrossRefGoogle Scholar
  32. 32.
    Davis BH (2002) Catal Today 71:249CrossRefGoogle Scholar
  33. 33.
    Guettel R, Kunz U, Turek T (2008) Chem Eng Technol 31:746CrossRefGoogle Scholar
  34. 34.
    Khadzhiev SN, Lyadov AS, Krylova MV, Krylova AY (2011) Pet Chem 51:24CrossRefGoogle Scholar
  35. 35.
    Kolbel H, Ralek M (1980) Catal Rev Sci Eng 21:225CrossRefGoogle Scholar
  36. 36.
    Yan N, Xiao C, Kou Y (2010) Chem Rev 254:1179Google Scholar
  37. 37.
    Lee GVD, Ponec V (1987) Catal Rev Sci Eng 29:183CrossRefGoogle Scholar
  38. 38.
    Jacobs G, Das TK, Patterson PM, Li J, Sanchez L, Davis BH (2003) Appl Catal A Gen 247:335CrossRefGoogle Scholar
  39. 39.
    Hilmen AM, Schanke D, Hanssen KF, Holmen A (1999) Appl Catal A Gen 186:169CrossRefGoogle Scholar
  40. 40.
    van Santen RA, Ciobica IM, van Steen E, Ghouri MM (2011) Adv Catal 54:127Google Scholar
  41. 41.
    Pichler H, Schulz H (1970) Chem Eng Technol 42:1162Google Scholar
  42. 42.
    Davis BH (2009) Catal Today 141:25CrossRefGoogle Scholar
  43. 43.
    Bechara R, Balloy D, Vanhove D (2001) Appl Catal A Gen 207:343CrossRefGoogle Scholar
  44. 44.
    Das TK, Jacobs G, Patterson PM, Conner WA, Li J, Davis BH (2003) Fuel 82:805CrossRefGoogle Scholar
  45. 45.
    Hurlbut RS, Puskas I, Schumacher DJ (1996) Energy Fuels 10:537CrossRefGoogle Scholar
  46. 46.
    Dry ME (1996) Appl Catal A Gen 138:319CrossRefGoogle Scholar
  47. 47.
    Riedel T, Claeys M, Schulz H (1999) Appl Catal A Gen 186:201CrossRefGoogle Scholar
  48. 48.
    Riedel T, Schaub G (2003) Top Catal 26:145CrossRefGoogle Scholar
  49. 49.
    Van Der Laan G, Beenackers A (1999) Catal Rev Sci Eng 41:255CrossRefGoogle Scholar
  50. 50.
    Yates IC, Satterfield CN (1991) Energy Fuels 5:168CrossRefGoogle Scholar
  51. 51.
    Cooper CG, Nguyen TH, Lee YJ, Hardiman KM, Safinski T, Lucien FP, Adesina AA (2008) Catal Today 131:255CrossRefGoogle Scholar
  52. 52.
    Yan Z, Wang Z, Bukur DB, Goodman DW (2009) J Catal 268:196CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Venkat Ramana Rao Pendyala
    • 1
  • Wilson D. Shafer
    • 1
  • Gary Jacobs
    • 1
  • Burtron H. Davis
    • 1
  1. 1.Center for Applied Energy ResearchUniversity of KentuckyLexingtonUSA

Personalised recommendations