Skip to main content
Log in

Fischer–Tropsch Synthesis: Effect of Reaction Temperature for Aqueous-Phase Synthesis Over a Platinum Promoted Co/Alumina Catalyst

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The effect of reaction temperature on the performance of a traditional Fischer–Tropsch cobalt catalyst (0.5 % Pt–25 % Co/Al2O3) was investigated during aqueous-phase Fischer–Tropsch synthesis (AFTS) using a 1 L stirred tank reactor in the batch mode of operation. The CO conversion rate of the catalyst was found to increase monotonically with increasing reaction temperature. At lower temperatures oxygenate selectivity was high. With increasing the reaction temperature, oxygenate selectivity decreased and the selectivity to hydrocarbons increased. Carbon dioxide and methane selectivity also increased with reaction temperature and the corresponding higher hydrocarbon (C5+) selectivity decreased. For comparison, the CO conversion rate of the catalyst was also tested using C30 oil as a solvent, and similar activation and reaction conditions were utilized in the batch mode of operation. Slightly higher CO rate was observed with C30 oil as a solvent than with the water.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cano AL, Cagnoli MV, Bengoa JF, Alvarez AN, Marchetti SG (2011) J Catal 278:310

    Article  CAS  Google Scholar 

  2. Gonzalez O, Perez H, Navarro P, Almeida LC, Pacheco JG, Montes M (2009) Catal Today 148:140

    Article  CAS  Google Scholar 

  3. Luque R, de la Osa AR, Campelo JM, Romero AA, Valverde JL, Sanchez P (2012) Energy Environ Sci 5:5186

    Article  CAS  Google Scholar 

  4. Schulz H (1999) Appl Catal A Gen 186:3

    Article  CAS  Google Scholar 

  5. Reuel RC, Bartholomew CH (1984) J Catal 85:78

    Article  CAS  Google Scholar 

  6. Schulz H, van Steen E, Claeys M (1994) Stud Surf Sci Catal 81:204

    Google Scholar 

  7. Iglesia E, Soled SL, Fiato RA (1992) J Catal 137:212

    Article  CAS  Google Scholar 

  8. Iglesia E (1997) Appl Catal A Gen 161:59

    Article  CAS  Google Scholar 

  9. Khodakov AY, Chu W, Fongarland P (2007) Chem Rev 107:1692

    Article  CAS  Google Scholar 

  10. Zhang Q, Kang J, Wang Y (2010) ChemCatChem 2:1030

    Article  CAS  Google Scholar 

  11. Oukaci R, Singleton AH, Goodwin JG Jr (1999) Appl Catal A Gen 186:129

    Article  CAS  Google Scholar 

  12. Dry ME (2002) Catal Today 71:227

    Article  CAS  Google Scholar 

  13. Davis BH (2005) Top Catal 32:143

    Article  CAS  Google Scholar 

  14. Dalai AK, Davis BH (2008) Appl Catal A Gen 348:1

    Article  CAS  Google Scholar 

  15. van Steen E, Schulz H (1999) Appl Catal A Gen 186:309

    Article  Google Scholar 

  16. Bertole CJ, Mims CA, Kiss G (2002) J Catal 210:84

    Article  CAS  Google Scholar 

  17. Claeys M, van Steen E (2002) Catal Today 71:419

    Article  CAS  Google Scholar 

  18. Pendyala VRR, Shafer WD, Davis BH (2013) Catal Lett 143:895

    Article  CAS  Google Scholar 

  19. Xiao C, Cai Z, Wang T, Kou Y, Yan N (2008) Angew Chem Int Ed 47:746

    Article  CAS  Google Scholar 

  20. Wang H, Zhou W, Liu J, Si R, Sun G, Zhong M, Su H, Zhao H, Rodriguez JA, Pennycook SJ, Idrobo J, Li W, Kou Y, Ma D (2013) J Am Chem Soc 135:4149

    Article  CAS  Google Scholar 

  21. Quek X, Guan Y, van Santen RA, Hensen EJM (2011) ChemCatChem 3:1735

    Article  CAS  Google Scholar 

  22. Liu L, Sun G, Wang C, Yang J, Xiao C, Wang H, Ma D, Kou Y (2012) Catal Today 183:136

    Article  CAS  Google Scholar 

  23. Wang C, Zhao H, Wang H, Liu L, Xiao C, Ma D (2012) Catal Today 183:143

    Article  CAS  Google Scholar 

  24. Shi D, Faria JA, Rownaghi AA, Huhnke RL, Resasco DE (2013) Energy Fuels 27:6118

    Article  CAS  Google Scholar 

  25. Hibbitts DD, Loveless BT, Neurock M, Iglesia E (2013) Angew Chem Int Ed 52:12273

    Article  CAS  Google Scholar 

  26. Espinoza RL, Visagie JL, van Berge PJ, Bolder FH (1998) U.S. Patent 5,733,839

    Google Scholar 

  27. Li J, Zhan X, Zhang Y, Jacobs G, Das TK, Davis BH (2002) Appl Catal A Gen 228:203

    Article  CAS  Google Scholar 

  28. Deitz WA (1967) J Gas Chromatogr 5:68

    Article  Google Scholar 

  29. Jacobs G, Zhang Y, Das TK, Li J, Patterson PM, Davis BH (2001) Deactivation of a Ru promoted Co/Al2O3 catalyst for FT synthesis. In: Roberts GW, Davis BH (eds) Stud Surf Sci Catal, Elsevier, Amsterdam, 139: 415

  30. Jacobs G, Das TK, Zhang YQ, Li J, Racoillet G, Davis BH (2002) Appl Catal A: Gen 233:263

    Article  CAS  Google Scholar 

  31. Jacobs G, Ji Y, Davis BH, Cronauer DC, Kropf AJ, Marshall CL (2007) Appl Catal A: Gen 333:177

    Article  CAS  Google Scholar 

  32. Davis BH (2002) Catal Today 71:249

    Article  CAS  Google Scholar 

  33. Guettel R, Kunz U, Turek T (2008) Chem Eng Technol 31:746

    Article  CAS  Google Scholar 

  34. Khadzhiev SN, Lyadov AS, Krylova MV, Krylova AY (2011) Pet Chem 51:24

    Article  CAS  Google Scholar 

  35. Kolbel H, Ralek M (1980) Catal Rev Sci Eng 21:225

    Article  Google Scholar 

  36. Yan N, Xiao C, Kou Y (2010) Chem Rev 254:1179

    CAS  Google Scholar 

  37. Lee GVD, Ponec V (1987) Catal Rev Sci Eng 29:183

    Article  Google Scholar 

  38. Jacobs G, Das TK, Patterson PM, Li J, Sanchez L, Davis BH (2003) Appl Catal A Gen 247:335

    Article  CAS  Google Scholar 

  39. Hilmen AM, Schanke D, Hanssen KF, Holmen A (1999) Appl Catal A Gen 186:169

    Article  CAS  Google Scholar 

  40. van Santen RA, Ciobica IM, van Steen E, Ghouri MM (2011) Adv Catal 54:127

    Google Scholar 

  41. Pichler H, Schulz H (1970) Chem Eng Technol 42:1162

    CAS  Google Scholar 

  42. Davis BH (2009) Catal Today 141:25

    Article  CAS  Google Scholar 

  43. Bechara R, Balloy D, Vanhove D (2001) Appl Catal A Gen 207:343

    Article  CAS  Google Scholar 

  44. Das TK, Jacobs G, Patterson PM, Conner WA, Li J, Davis BH (2003) Fuel 82:805

    Article  CAS  Google Scholar 

  45. Hurlbut RS, Puskas I, Schumacher DJ (1996) Energy Fuels 10:537

    Article  CAS  Google Scholar 

  46. Dry ME (1996) Appl Catal A Gen 138:319

    Article  CAS  Google Scholar 

  47. Riedel T, Claeys M, Schulz H (1999) Appl Catal A Gen 186:201

    Article  CAS  Google Scholar 

  48. Riedel T, Schaub G (2003) Top Catal 26:145

    Article  CAS  Google Scholar 

  49. Van Der Laan G, Beenackers A (1999) Catal Rev Sci Eng 41:255

    Article  Google Scholar 

  50. Yates IC, Satterfield CN (1991) Energy Fuels 5:168

    Article  CAS  Google Scholar 

  51. Cooper CG, Nguyen TH, Lee YJ, Hardiman KM, Safinski T, Lucien FP, Adesina AA (2008) Catal Today 131:255

    Article  CAS  Google Scholar 

  52. Yan Z, Wang Z, Bukur DB, Goodman DW (2009) J Catal 268:196

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Commonwealth of Kentucky.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burtron H. Davis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pendyala, V.R.R., Shafer, W.D., Jacobs, G. et al. Fischer–Tropsch Synthesis: Effect of Reaction Temperature for Aqueous-Phase Synthesis Over a Platinum Promoted Co/Alumina Catalyst. Catal Lett 144, 1088–1095 (2014). https://doi.org/10.1007/s10562-014-1247-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-014-1247-z

Keywords

Navigation