Catalysis Letters

, Volume 144, Issue 5, pp 783–795 | Cite as

Hydrogenation of Tetralin Over Ir Catalysts Supported on Titania-Modified SBA-16

  • Brenda C. Ledesma
  • Verónica A. Vallés
  • Lorena P. Rivoira
  • María L. Martínez
  • Oscar A. Anunziata
  • Andrea R. Beltramone


A series of Ti modified SBA-16 supports and their respective Ir-catalysts were prepared and characterized to study the effect of support preparation method on the dispersion of iridium and on the characteristics of Ir surface species. Two methods of incorporation of titania were tested: the sol–gel method in order to obtain Ti as heteroatom and incipient wetness impregnation to obtain Ti as TiO2 (anatase phase). The results show that supports with different Ti species and dispersion can be obtained. The final catalyst was characterized at different preparation stages by XRD, elemental analysis and BET. The presence of Ti as Ti4+ in the nanostructure of SBA and as TiO2 (anatase phase) was analyzed by UV–Vis–DRS and Raman spectroscopy. The iridium oxidation sate upon Ti-containing SBA-16 was studied by XPS, EDX, TEM and XRD, arriving at the good proportion of Ir0. H2 chemisorption and TEM characterization for Ti-SBA-16 indicated that Ir particle size was lower than anatase/SBA-16. The catalyst that we synthesized had good activity measured in tetralin hydrogenation in presence of quinoline at mild conditions. The experimental data were quantitatively represented by a modified Langmuir–Hinshelwood-type rate equation. The preliminary results show these materials as promising catalysts for HDS/HDN reactions.

Graphical Abstract


Iridium-containing SBA-16 Titanium-modified SBA-16 Ti incorporation method Hydrogenation Inhibition Reaction kinetics 



The authors are very grateful to Drs. J.L. García Fierro, J.M Martin and H. Falcon for XPS, UV–Vis-DRS and TEM characterization performed in ICP-CSIC. Madrid. We thank to CONICET Argentina, PIP No. 112-200801-00388 (2009-2013) and MINCyT Cba. 1210/07 (2007-2013) for financial assistance.


  1. 1.
    McVicker GB, Touvelle MS, Hudson CW, Vaughan DEW, Daage M, Hantzer S, Klein DP, Ellis ES, Cook BR, Feeley OC, Baumgartner JE (1998) Process for selectively opening naphthenic rings. Exxon Research and Engineering Company. US Patent 5,763,731Google Scholar
  2. 2.
    Hantzer S, Touvelle MS, Chen, J (1997) Selective opening of five and six membered rings. Exxon Research and Engineering Company. International Patent WO 97/09289Google Scholar
  3. 3.
    Touvelle MS, McVicker GB, Daage M, Hantzer S, Hudson CW, Klein DP, Vaughan DEW, Ellis ES, Chen J (1997) Process for selectively opening naphtenic rings. Exxon Research and Engineering Company. International Patent WO/09290Google Scholar
  4. 4.
    Cunha D, Cruz G (2002) Appl Catal A 236:55–66CrossRefGoogle Scholar
  5. 5.
    McVicker G, Daage M, Touvelle M, Hudson C, Klein D, Baird W, Cook B, Chen J, Hantzer S, Vaughan D, Ellis E, Feeley O (2002) J Catal 210:137–148CrossRefGoogle Scholar
  6. 6.
    Arribas M, Concepción P, Martínez A (2004) Appl Catal A 267:111–119CrossRefGoogle Scholar
  7. 7.
    Nylen U, Delgado JF, Järás S, Boutonnet M (2004) Appl Catal A 262:189–200CrossRefGoogle Scholar
  8. 8.
    Frety R, da Silva P, Guenin M (1990) Appl Catal A 57:99–103CrossRefGoogle Scholar
  9. 9.
    Dees MJ, den Hartog AJ, Ponec V (1991) Appl Catal A 72:343–360CrossRefGoogle Scholar
  10. 10.
    Cinibulk J, Vít Z (1999) Appl Catal A 180:15–23CrossRefGoogle Scholar
  11. 11.
    Vít Z (2007) Appl Catal A 322:142–151CrossRefGoogle Scholar
  12. 12.
    Frety R, Da Silva PN, Guenin M (1990) Appl Catal A 57:99–103CrossRefGoogle Scholar
  13. 13.
    Navarro R, Pawelec B, Fierro JLG, Vasudevan PT, Cambra JF, Arias PL (1996) Appl Catal A 137:269–286CrossRefGoogle Scholar
  14. 14.
    Barbier J, Marecot P, Tifouti L, Guenin M, Frety R (1985) Appl Catal A 19:375–385CrossRefGoogle Scholar
  15. 15.
    Matsui T, Harada M, Ichihashi Y, Bando K, Matsubayashi N, Toba M, Yoshimura Y (2005) Appl Catal A 286:249–257CrossRefGoogle Scholar
  16. 16.
    Cowan R, Høglin M, Reinink H, Jsebaert J, Chadwick D (1998) Catal Today 45:381–384CrossRefGoogle Scholar
  17. 17.
    Dhainaut E, Charcosset H, Cachet Ch, de Mourgues L (1982) Appl Catal A 2:75–86CrossRefGoogle Scholar
  18. 18.
    Rocha AS, Moreno EL, da Silva GPM, Zotin JL, Faro AC Jr (2008) Catal Today 133–135:394–399CrossRefGoogle Scholar
  19. 19.
    Dees MJ, den Hartog AJ, Ponec V (1991) Appl Catal A 72:343–360CrossRefGoogle Scholar
  20. 20.
    Ponec V (1983) Adv Catal 32:149–214Google Scholar
  21. 21.
    Barbier J, Marecot P (1986) J Catal 102:21–28CrossRefGoogle Scholar
  22. 22.
    Liua Z, Li J, Junaid A (2010) Catal Today 153:95–102CrossRefGoogle Scholar
  23. 23.
    Klimova T, Gutiérrez O, Lizama L, Amezcua J (2010) J Microporous Mesoporous Mater 133:91–99CrossRefGoogle Scholar
  24. 24.
    Lizama L, Perez M, Klimova T (2008) Zeolites and related materials: trends, targets and challenges. In: Proceedings of 4th international FEZA conference, pp 1251–1254Google Scholar
  25. 25.
    Gutiérrez-Tinoco O, Romero-Moreno K, Leocadio-Cerón E, Fuentes-Zurita G, Klimova T (2006) Revista Mexicana de Ingeniería Química 5(3):179–187Google Scholar
  26. 26.
    Amezcua JC, Lizama L, Salcedo C, Puente I, Dominguez JM, Klimova T (2005) Catal Today 107–108:578–588CrossRefGoogle Scholar
  27. 27.
    Nava R, Ortega RA, Alonso G, Ornelas C, Pawelec B, Fierro JLG (2007) Catal Today 127:70–84CrossRefGoogle Scholar
  28. 28.
    Cheng CF, Lin YC, Cheng HH, Chen YC (2003) Chem Phys Lett 382(56):496–501CrossRefGoogle Scholar
  29. 29.
    Sakamoto Y, Kaneda M, Terasaki O, Zhao DY, Kim JM, Stucky G, Shin HJ, Ryoo R (2000) Nature 408:449–453CrossRefGoogle Scholar
  30. 30.
    Balangero Bottazzi GS, Martínez ML, Gomez Costa M, Anunziata OA, Beltramone AR (2011) Appl Catal A 404(1):30–38Google Scholar
  31. 31.
    Kim TW, Ryoo R, Kruk M, Gierszal K, Jaroniec M, Kamiya S, Terasaki O (2004) J Phys Chem B 108:11480–11489CrossRefGoogle Scholar
  32. 32.
    Imelik B, Vedrine JC. In: Imelik B, Vedrine JC (eds) (1994) Catalyst characterisation, physical techniques for solid materials, Plenum Press, New York, pp 690–691Google Scholar
  33. 33.
    Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Science 279:548–552CrossRefGoogle Scholar
  34. 34.
    Zhao D, Huo Q, Feng J, Chmelka BF, Stucky GD (1998) J Am Chem Soc 120:6024–6036CrossRefGoogle Scholar
  35. 35.
    Wu S, Han Y, Zou YC, Song JW, Zhao L, Di Y, Liu SZ, Xiao FS (2004) Method. Chem Mater 16:486–492CrossRefGoogle Scholar
  36. 36.
    Aburto J, Ayala M, Bustos-Jaimes I, Montiel C, Terres E, Dominguez JM, Torres E (2005) Microporous Mesoporous Mater 83:193–200CrossRefGoogle Scholar
  37. 37.
    Cheng CF, Lin YC, Cheng HH, Chen YC (2003) Chem Phys Lett 382:496–501CrossRefGoogle Scholar
  38. 38.
    Van Der Voort P, Benjelloun M, Vansant EF (2002) J Phys Chem B 106:9027–9032CrossRefGoogle Scholar
  39. 39.
    Luan Z, Maes EM, Van der Heide PAW, Zhao D, Czernuszewicz RS, Kevan L (1999) Chem Mater 11:3680–3686CrossRefGoogle Scholar
  40. 40.
    Klien S, Weckhuysen BM, Martens JA, Maier WF, Jacobs PA (1996) Homogeneity of titania–silica mixed oxides: detailed UV–DRS-studies as function of titania-content. J Catal 163:489-491Google Scholar
  41. 41.
    Petrini G, Cesana A, De Alberti GF, Genoni G, Leofanti M, Padovan M, Paparatto G, Roffia P (1991) Deactivation phenomena on ti-silicalite. Stud Surf Sci Catal 68:761-766Google Scholar
  42. 42.
    Balaji SY (2006) Raman Spectrosc 37:1416–1422CrossRefGoogle Scholar
  43. 43.
    Bassi AL, Cattaneo D, Russo V, Bottani CE, Barborini E, Mazza T, Piseri P, Milani P, Ernst FO, Wegner K, Pratsinis SEJ (2005) Appl Phys 98:074305–074305-9CrossRefGoogle Scholar
  44. 44.
    Reyes P, Aguirre MC, Pecchi G, Fierro JLG (2000) J Mol Catal A 164(1–2):245–251CrossRefGoogle Scholar
  45. 45.
    Tian H, Zhang T, Sun X, Liang D, Li L (2001) Appl Catal A 210(1–2):55–62CrossRefGoogle Scholar
  46. 46.
    Jia J, Zhou J, Zhang C, Yuan Z, Wang S, Cao L, Wang S (2008) Appl Catal A 341(1–2):1–7CrossRefGoogle Scholar
  47. 47.
    Haneda M, Fujitani T, Hamada H (2006) J Mol Catal A 256(1–2):143–148CrossRefGoogle Scholar
  48. 48.
    Amrousse R, Katsumi T, Niboshi Y, Azuma N, Bachar A, Hori K (2013) Appl Catal A 452:64-68Google Scholar
  49. 49.
    Yoshida A, Takahashi Y, Ikeda T, Azemoto K, Naito S (2011) Catal Today 164(1):332–335CrossRefGoogle Scholar
  50. 50.
    Atuchin VV, Kesler VG, Pervukhina NV, Zhang Z (2006) J Electron Spectrosc Relat Phenom 152(12):18–24CrossRefGoogle Scholar
  51. 51.
    LaVopa V, Satterfield CN (1988) J Catal 110:375–387CrossRefGoogle Scholar
  52. 52.
    Furimsky E, Massoth FE (1999) Catal Today 52:381–495CrossRefGoogle Scholar
  53. 53.
    Laredo G, De los Reyes J, Cano L, Castillo J (2001) Appl Catal A 207:103-112Google Scholar
  54. 54.
    Beltramone AR, Resasco DE, Alvarez WE, Choudhary TV (2008) Ind Eng Chem Res 47:19CrossRefGoogle Scholar
  55. 55.
    Santikunaporn M, Herrera J, Jongpatiwut S, Resasco DE, Alvarez WE, Sughrue EL (2004) J Catal 228:100CrossRefGoogle Scholar
  56. 56.
    Amezcua JC, Salcedo C, Puente I, Dominguez J, Klimova T (2005) Catal Today 107–108:578–588CrossRefGoogle Scholar
  57. 57.
    Vít Z (2007) Appl Catal A 322:142–151CrossRefGoogle Scholar
  58. 58.
    Harvey TG, Pratt KC (1989) Appl Catal 47:335–341CrossRefGoogle Scholar
  59. 59.
    Dong D, Jeong S, Massoth FE (1997) Catal Today 37:267–275CrossRefGoogle Scholar
  60. 60.
    Muegge B, Massoth FE, Bartholomew CH, Butt JB (Eds.) (1991) Catalyst Deactiv 68:297-304Google Scholar
  61. 61.
    Yang SH, Satterfield CN (1984) Ind Eng Chem Proc Des Dev 23:20–25CrossRefGoogle Scholar
  62. 62.
    Dalla Betta RA, Boudart M (1973) Preparation and catalytic activity. In: Proceedings 5th international congress on catalysis, vol 2. North Holland, Amsterdam, pp 1329–1341Google Scholar
  63. 63.
    Yoshimura Y, Toba M, Matsui T, Harada M, Ichihashi Y, Bando KK, Yasuda H, Ishihara H, Morita Y, Kameoka T (2007) Appl Catal A 322:152–171CrossRefGoogle Scholar
  64. 64.
    Klimova T, Rodríguez E, Martínez M, Ramírez J (2001) Microporous Mesoporous Mater 44–45:357–365CrossRefGoogle Scholar
  65. 65.
    Foger KE, Anderson JR (1979) J Catal 59(3):325–339CrossRefGoogle Scholar
  66. 66.
    Srivastava R, Srinivas D, Ratnasamy P (2006) Microporous Mesoporous Mater 90:314–326CrossRefGoogle Scholar
  67. 67.
    Saikia L, Satyarthi JK, Srinivas D, Ratnasamy P (2007) J Catal 252:148–160CrossRefGoogle Scholar
  68. 68.
    Srivastava R, Srinivas D, Ratnasamy P (2005) J Catal 233:1–15CrossRefGoogle Scholar
  69. 69.
    Srinivas D, Srivastava R, Ratnasamy P (2004) Materials design in catalysis. Catal Today 96(3):127–133CrossRefGoogle Scholar
  70. 70.
    Klimova T, Gutiérrez O, Lizama L, Amezcua J (2010) Microporous Mesoporous Mater 133:91–99CrossRefGoogle Scholar
  71. 71.
    Arata K, Akutagawa S, Tanabe K (1976) Bull Chem Soc Jpn 49:390–393CrossRefGoogle Scholar
  72. 72.
    Wang I, Chang WF, Shiau RJ, Wu JC, Chung CS (1983) J Catal 83:428–436CrossRefGoogle Scholar
  73. 73.
    Lin TB, Jan CA, Chang JR (1995) Ind Eng Chem Res 34:4284–4289CrossRefGoogle Scholar
  74. 74.
    Rousset JL, Stievano L, Cadete Santos Aires FJ, Geantet C, Renouprez AJ, Pellarin M (2001) J Catal 202:163–168CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Brenda C. Ledesma
    • 1
  • Verónica A. Vallés
    • 1
  • Lorena P. Rivoira
    • 1
  • María L. Martínez
    • 1
  • Oscar A. Anunziata
    • 1
  • Andrea R. Beltramone
    • 1
  1. 1.Centro de Investigación en Nanociencia y Nanotecnología (NANOTEC), Facultad Regional CórdobaUniversidad Tecnológica NacionalCórdobaArgentina

Personalised recommendations