Advertisement

Catalysis Letters

, Volume 144, Issue 5, pp 867–877 | Cite as

Production of Renewable Hydrogen by Glycerol Steam Reforming Using Ni–Cu–Mg–Al Mixed Oxides Obtained from Hydrotalcite-like Compounds

  • Robinson L. Manfro
  • Mariana M. V. M. Souza
Article

Abstract

Ni–Cu catalysts derived from hydrotalcite-like compounds were prepared with 20 wt% of NiO and 0, 5, and 10 wt% of CuO, and evaluated in the steam reforming of glycerol. The reaction was performed in a continuous flow reactor with a solution of 10 and 20 vol.% glycerol, at 500 °C and atmospheric pressure. The highest conversion of glycerol (around 100 %) was obtained with Ni catalyst in both solutions. In the gas phase, the higher H2 selectivities were obtained with Cu-containing catalysts: 71 % (Ni5Cu/10 vol.%) and 68 % (Ni10Cu/20 vol.%). The main products formed in the liquid phase were lactic acid, acetol, acetaldehyde and acrolein and a small quantity of acetic acid. Characterization of the spent catalysts revealed that Cu-containing catalysts have greater resistance to carbon formation and the sintering process is not significant, showing that the catalysts prepared exhibit good catalytic stability.

Graphical Abstract

Keywords

Steam reforming Glycerol Hydrogen Nickel Copper 

Notes

Acknowledgments

The authors thank CNPq for the financial support granted to carry out this work.

References

  1. 1.
    Selembo PA, Perez JM, Lloyd WA, Logan BE (2009) Int J Hydrog Energy 34:5373CrossRefGoogle Scholar
  2. 2.
    Zhou CH, Zhao H, Tong DS, Wu LM, Yu WH (2013) Catal Rev Sci Eng 55:369CrossRefGoogle Scholar
  3. 3.
    Zheng Y, Chen X, Shen Y (2008) Chem Rev 108:5253CrossRefGoogle Scholar
  4. 4.
    Tan HW, Aziz ARA, Aroua MK (2013) Renew Sust Energy Rev 27:118CrossRefGoogle Scholar
  5. 5.
    Maglinao RL, He BB (2011) Ind Eng Chem Res 50:6028CrossRefGoogle Scholar
  6. 6.
    Dunn S (2002) Int J Hydrog Energy 27:235CrossRefGoogle Scholar
  7. 7.
    Kirtay E (2011) Energy Conv Manag 52:1778CrossRefGoogle Scholar
  8. 8.
    Cortright RD, Davda RR, Dumesic JA (2002) Nature 418:964CrossRefGoogle Scholar
  9. 9.
    Davda RR, Shabaker JW, Huber GW, Cortright RD, Dumesic JA (2005) Appl Catal B 56:171CrossRefGoogle Scholar
  10. 10.
    Adhikari S, Fernando SD, Haryanto A (2007) Catal Today 129:355CrossRefGoogle Scholar
  11. 11.
    Sehested J (2006) Catal Today 111:103CrossRefGoogle Scholar
  12. 12.
    Chiodo V, Freni S, Galvagno A, Mondello N, Frusteri F (2010) Appl Catal A 381:1CrossRefGoogle Scholar
  13. 13.
    Franchini CA, Aranzaez W, de Farias AMD, Pecchi G, Fraga MA (2014) Appl Catal B 147:193CrossRefGoogle Scholar
  14. 14.
    Cheng CK, Foo SY, Adesina AA (2011) Catal Today 164:268CrossRefGoogle Scholar
  15. 15.
    Profeti LPR, Ticianelli EA, Assaf EM (2009) Int J Hydrog Energy 34:5049CrossRefGoogle Scholar
  16. 16.
    Esteban AS, Miguel AD, Raul AC (2010) Int J Hydrog Energy 35:5902CrossRefGoogle Scholar
  17. 17.
    Soares RR, Simonetti DA, Dumesic JA (2006) Angewandte Chemie Int Edition 118:4086CrossRefGoogle Scholar
  18. 18.
    Adhikari S, Fernando S, Haryanto A (2007) Energy Fuels 21:2306CrossRefGoogle Scholar
  19. 19.
    Cheng CK, Foo SY, Adesina AA (2010) Catal Commun 12:292CrossRefGoogle Scholar
  20. 20.
    Nichele V, Signoretto M, Menegazzo F, Gallo A, Dal Santo V, Cruciani G (2012) Appl Catal B 111-112:225CrossRefGoogle Scholar
  21. 21.
    Lin Y-C (2013) Int J Hydrogen Energy 38:2678CrossRefGoogle Scholar
  22. 22.
    Wang C, Dou B, Chen H, Song Y, Xu Y, Du X, Zhang L, Luo T, Tan C (2013) Int J Hydrog Energy 38:3562CrossRefGoogle Scholar
  23. 23.
    Huber GW, Shabaker JW, Dumesic JA (2003) Science 300:2075CrossRefGoogle Scholar
  24. 24.
    Iriondo A, Cambra JF, Barrio VL, Guemez MB, Arias PL, Sanchez-Sanchez MC, Navarro RM, Fierro JLG (2011) Appl Catal B 106:83Google Scholar
  25. 25.
    Adhikari S, Fernando SD, Haryanto A (2008) Renewable Energy 33:1097CrossRefGoogle Scholar
  26. 26.
    Davda RR, Shabaker JW, Huber GW, Cortright RD, Dumesic JA (2003) Appl Catal B 43:13CrossRefGoogle Scholar
  27. 27.
    Cavani F, Trifiró F, Vaccari A (1991) Catal Today 11:173CrossRefGoogle Scholar
  28. 28.
    Tsyganok AI, Tsunoda T, Hamakawa S, Suzuki K, Takehira K, Hayakawa T (2003) J Catal 213:191CrossRefGoogle Scholar
  29. 29.
    Fonseca A, Assaf EM (2005) J Power Sources 142:154CrossRefGoogle Scholar
  30. 30.
    Cruz IO, Ribeiro NFP, Aranda DAG, Souza MMVM (2008) Catal Commun 9:2606CrossRefGoogle Scholar
  31. 31.
    Ferreira KA, Ribeiro NFP, Souza MMVM, Schmal M (2009) Catal Lett 132:58CrossRefGoogle Scholar
  32. 32.
    Vizcaíno AJ, Carrero A, Calles JA (2007) Int J Hydrog Energy 32:1450CrossRefGoogle Scholar
  33. 33.
    Chen L-C, Lin SD (2011) Appl Catal B 106:639CrossRefGoogle Scholar
  34. 34.
    Furtado AC, Alonso CG, Cantão MP, Fernandes-Machado NRC (2011) Int J Hydrog Energy 36:9653CrossRefGoogle Scholar
  35. 35.
    Corma A, Fornes V, Rey F (1994) J Catal 148:205CrossRefGoogle Scholar
  36. 36.
    Manfro RL, Pires TPMD, Ribeiro NFP, Souza MMVM (2013) Catalysis Sci Technol 3:1278CrossRefGoogle Scholar
  37. 37.
    Adhikari S, Fernando S, Gwaltney SR, Filip To SD, Bricka RM, Steele PH, Haryanto A (2007) Int J Hydrog Energy 32:2875CrossRefGoogle Scholar
  38. 38.
    Ashok J, Subrahmanyam M, Venugopal A (2008) Int J Hydrog Energy 33:2008Google Scholar
  39. 39.
    Buffoni IN, Pompeo F, Santori GF, Nichio NN (2009) Catal Commun 10:1656CrossRefGoogle Scholar
  40. 40.
    Dave CD, Pant KK (2011) Renew Energy 36:3195CrossRefGoogle Scholar
  41. 41.
    Iriondo A, Barrio VL, Cambra JF, Arias PL, Guemez MB, Sanchez-Sanchez MC, Navarro RM, Fierro JLG (2010) Int J Hydrog Energy 35:11622CrossRefGoogle Scholar
  42. 42.
    Zhang L, Liu J, Li W, Guo C, Zhang J (2009) J Natural Gas Chem 18:55CrossRefGoogle Scholar
  43. 43.
    Gallo A, Pirovano C, Ferrini P, Marelli M, Psaro R, Santangelo S, Faggio G, Santo VD (2012) Appl Catal B 121–122:40CrossRefGoogle Scholar
  44. 44.
    Rogatis LD, Montini T, Lorenzut B, Fornasiero P (2008) Energy Environm Sci 1:501Google Scholar
  45. 45.
    Manfro RL, Ribeiro NFP, Souza MMVM (2013) Catal Sustainable Energy 1:60Google Scholar
  46. 46.
    Araque M, Martínez TLM, Vargas JC, Centeno MA, Roger AC (2012) Appl Catal B 125:556CrossRefGoogle Scholar
  47. 47.
    Sundari R, Vaidya PD (2012) Energy Fuels 26:4195CrossRefGoogle Scholar
  48. 48.
    Wang F, Li Y, Cai W, Zhan E, Mu X, Shen W (2009) Catal Today 146:31CrossRefGoogle Scholar
  49. 49.
    Cabanas-Polo S, Bermejo R, Ferrari B, Sanchez-Herencia AJ (2012) Corros Sci 55:172CrossRefGoogle Scholar
  50. 50.
    Sánchez-Sánchez MC, Navarro RM, Fierro JLG (2007) Catal Today 129:336CrossRefGoogle Scholar
  51. 51.
    Martínez TLM, Araque M, Vargas JC, Roger AC (2013) Appl Catal B 132–133:499CrossRefGoogle Scholar
  52. 52.
    Djaidja A, Kiennemann A, Barama A (2006) Studies Surf Sci Catal 162:945CrossRefGoogle Scholar
  53. 53.
    Bernardo CA, Alstrup I, Rostrup-Nielsen JR (1985) J Catal 96:517CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Robinson L. Manfro
    • 1
  • Mariana M. V. M. Souza
    • 1
  1. 1.Escola de QuímicaUniversidade Federal do Rio de Janeiro - UFRJ, Centro de TecnologiaRio de Janeiro/RJBrazil

Personalised recommendations