Catalysis Letters

, Volume 144, Issue 1, pp 16–21 | Cite as

Magnetically Recoverable Heterogeneous Catalyst: Tungstate Intercalated Mg–Al-Layered Double Hydroxides-Encapsulated Fe3O4 Nanoparticles for Highly Efficient Selective Oxidation of Sulfides with H2O2



High catalytic activity of tungstate intercalated in hydrotalcite-encapsulated magnetic Fe3O4 nanoparticles have been prepared. High resolution transmission electron microscopy characterization demonstrated the formation of Fe3O4 nanoparticles within LDH matrix with a mean diameter of 1–3 nm. The catalyst of WO4 2−/LDH@Fe3O4 exhibited excellent catalytic activity for the oxidation of various sulfides. The magnetic properties of the WO4 2−/LDH@Fe3O4 provided a convenient route for separation of the catalyst from the reaction mixture by application of an external permanent magnet. The spent catalyst could be recycled without appreciable loss of catalytic activity.

Graphical Abstract


Hydrotalcite Magnetic separation Sulfides oxidation Hydrogen peroxide 


  1. 1.
    Carreno MC (1995) Chem Rev 95:1717CrossRefGoogle Scholar
  2. 2.
    Holland HL (1988) Chem Rec 88:473CrossRefGoogle Scholar
  3. 3.
    Fernandez I, Khiar N (2003) Chem Rev 103:3651CrossRefGoogle Scholar
  4. 4.
    Carmen-Carreno M, Ribagorda M, Posner GH (2002) Angew Chem Int Ed 41:2753CrossRefGoogle Scholar
  5. 5.
    Block E (1992) Angew Chem Int Ed 31:1135CrossRefGoogle Scholar
  6. 6.
    Barton DHR, Li W, Smith JA (1998) Tetrahedron Lett 39:7055CrossRefGoogle Scholar
  7. 7.
    Breton GW, Fields JD, Kropp PJ (1995) Tetrahedron Lett 36:3825CrossRefGoogle Scholar
  8. 8.
    Hirano M, Yakabe S, Clark JH, Morimoto T (1996) J Chem Soc Perkin Trans 1:2693CrossRefGoogle Scholar
  9. 9.
    Venier CG, Squires TG, Chen YY, Hussmann GP, Shei JC, Smith BF (1982) J Org Chem 47:3773CrossRefGoogle Scholar
  10. 10.
    Jones CW (1999) Applications of hydrogen peroxide and derivatives. RSC, LondonGoogle Scholar
  11. 11.
    Lane BS, Burgess K (2003) Chem Rev 103:2457CrossRefGoogle Scholar
  12. 12.
    Sato K, Hyodo M, Aoki M, Zheng XQ, Noyori R (2001) Tetrahedron 57:2469CrossRefGoogle Scholar
  13. 13.
    Noyori R, Aoki M, Sato K (2003) Chem Commun 16:1977CrossRefGoogle Scholar
  14. 14.
    Shul’pin GB, Süss-Fink G, Shul’pina LS (2001) J Mol Catal A Chem 170:17CrossRefGoogle Scholar
  15. 15.
    Bahrami K, Khodaei MM, Yousefi BH, Arabi MS (2010) Tetrahedron Lett 51:6939CrossRefGoogle Scholar
  16. 16.
    Karimi B, Nezhad MG, Clark JH (2005) Org Lett 7:625CrossRefGoogle Scholar
  17. 17.
    Koo DH, Kim M, Chang S (2005) Org Lett 7:5015CrossRefGoogle Scholar
  18. 18.
    Breedhar B, Padhika P, Neelima B, Hhebalkar N, Mishra AK (2008) Catal Commun 10:39CrossRefGoogle Scholar
  19. 19.
    Romanelli GP, Villabrille PI, Cáceres CV, Vázquez PG, Tundo P (2011) Catal Commun 12:726CrossRefGoogle Scholar
  20. 20.
    Mori K, Kanai S, Hara T, Mizugaki T, Ebitani K, Jisukawa K, Kaneda K (2007) Chem Mater 19:1249CrossRefGoogle Scholar
  21. 21.
    Yuan C, Zhang Y, Chen J (2011) Chin J Catal 32:1166CrossRefGoogle Scholar
  22. 22.
    Jia MK, Su GJ, Zheng MH, Zhang B, Shi SJ (2010) Sci China Chem 53:1266CrossRefGoogle Scholar
  23. 23.
    Shokouhimehr M, Piao Y, Kim J, Yang Y, Hyeon T (2007) Angew Chem Int Ed 46:7039CrossRefGoogle Scholar
  24. 24.
    Zhao WR, Gu JL, Zhang LX, Chen HR, Shi JL (2005) J Am Chem Soc 127:8916CrossRefGoogle Scholar
  25. 25.
    Kim J, Lee JE, Lee J, Yu JH, Kim BC, Kim K, Hwang AnY, Shin CH, Park JG, Kim J, Hyeon T (2006) J Am Chem Soc 128:688CrossRefGoogle Scholar
  26. 26.
    Lin YS, Wu SH, Hung Y, Chou YH, Chang C, Lin ML, Tsai CP, Mou CY (2006) Chem Mater 18:5170CrossRefGoogle Scholar
  27. 27.
    Yuan C, Huang Z, Chen J (2011) Catal Lett 141:1484CrossRefGoogle Scholar
  28. 28.
    Wu CL, Huan HE, Gao HJ, Liu G, Ma RJ, An YL, Shi LQ (2010) Sci China Chem 53:514CrossRefGoogle Scholar
  29. 29.
    Sels B, De Vos D, Buntinx M, Pierard F, Mesmaeker AK, Jacobs P (1999) Nature 400:855CrossRefGoogle Scholar
  30. 30.
    Choy JH, Oh JM, Park M, Sohn KM, Kim JW (2004) Adv Mater 16:1181CrossRefGoogle Scholar
  31. 31.
    Darder M, Lopez-Blanco M, Aranda P, Leroux F, Ruizhitzky E (2005) Chem Mater 17:1969CrossRefGoogle Scholar
  32. 32.
    Li L, Feng YJ, Li YS, Zhao WR, Shi JL (2009) Angew Chem Int Ed 48:5888CrossRefGoogle Scholar
  33. 33.
    Li Z, You J, Wang J, Yang P, Jing X, Zhang M (2009) J Mater Process Technol 209:2613CrossRefGoogle Scholar
  34. 34.
    Wang J, Zhou J, Li Z, Liu Q, Yang P (2010) Mater Res Bull 45:640CrossRefGoogle Scholar
  35. 35.
    Pan D, Zhang H, Fan T, Chen J, Duan X (2011) Chem Commun 47:908CrossRefGoogle Scholar
  36. 36.
    Ay AN, Zumreoglu-Karan B, Temel A, Rives V (2009) Inorg Chem 48:8871CrossRefGoogle Scholar
  37. 37.
    Cavani F, Trifiro F, Vaccari A (1991) Catal Today 11:173CrossRefGoogle Scholar
  38. 38.
    Guo Y, Li D, Hu C, Yang Y, Wang E, Zhou Y, Feng S (2001) Appl Catal B 30:337CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Petrochemical Research InstitutePetroChinaBeijingChina

Personalised recommendations