Skip to main content
Log in

Effect of Graphene in Enhancing the Photo Catalytic Activity of Zirconium Oxide

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Graphene, have two-dimensional structure with high conductivity, extremely high specific surface area and superior electron mobility etc. It has been regarded as an important synthesis material for various composite materials used in many applications. Especially, graphene-based semiconductor photo catalysts have attracted extensive attention because of their usefulness in environmental applications such as air cleanup, water disinfection, hazardous waste remediation, and water purification. The present study involves the photo catalytic degradation of methyl orange by photo catalytic process using different concentrations of ZrO2/graphene synthesized at different annealing temperature. A series of zirconium oxide (ZrO2, zirconia) and graphene (Gr) composites with different contents of Gr (5.7, 7.3, 8.3 %) in the composite were synthesized using zirconium oxychloride (ZrOCl2·8H2O) and graphene oxide as the starting materials. The photocatalytic activities of the synthesized composites were measured for the degradation of methyl orange dye with UV spectroscopy. The rate of decolorization was recorded with respect to the change in intensity of absorption peaks for methyl orange. The absorption peaks, diminished and finally disappeared during reaction, indicating that the dye had been degraded. The photocatalytic activity is strongly affected by the concentration of graphene in the ZrO2. The synthesized ZrO2/graphene photocatalysts are characterized by X-ray diffraction, TGA, Raman spectroscopy and UV–Visible spectroscopy. Finally, it has been concluded that graphene when employed as catalytic support for ZrO2 boost its photo catalytic efficiency.

Graphical Abstract

Effect of graphene on photo catalytic activity of ZrO2 anneal at 1,000 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Manoj AL, Shaji V, Santhosh SN (2012) Photocatalytic water treatment by titanium dioxide: recent updates. Catalysts 2:572–601

    Article  Google Scholar 

  2. Meng NC, Bo J, Christopher WKC, Chris S (2010) Recent developments in photocatalytic water treatment technology: a review. Water Res 44:2997–3027

    Article  Google Scholar 

  3. Kuo WG (1992) Water Res 26:881

    Article  CAS  Google Scholar 

  4. Huston P, Pignatello JJ (1999) Water Res 33:1238

    Article  CAS  Google Scholar 

  5. Xiang Q, Yu J, Jaroniec M (2012) Chem Soc Rev 41:782–796

    Article  CAS  Google Scholar 

  6. Xiang Q, Yu J, Wong PK (2011) J Colloid Interface Sci 357:163–167

    Article  CAS  Google Scholar 

  7. Wang W, Yu J, Xiang Q, Cheng B (2012) Applied catalysis B. Environ 119–120:109–116

    Google Scholar 

  8. Xiang Q, Yu J (2013) J Phys Chem Lett 4:753–759

    Article  CAS  Google Scholar 

  9. Williams G, Seger B, Kamat PV (2008) ACS Nano 2:1487–1491

    Article  CAS  Google Scholar 

  10. Zhang H, Lv X, Li Y, Wang Y, Li J (2010) ACS Nano 4:380–386

    Article  CAS  Google Scholar 

  11. Xiang Q, Yu J, Jaroniec M (2012) J Am Chem Soc 134:6575–6578

    Article  CAS  Google Scholar 

  12. Stoller MD, Park S, Zhu Y, An J, Ruoff RS (2008) Nano Lett 8:3498–3502

    Article  CAS  Google Scholar 

  13. Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer HL (2008) Solid State Commun 146:351–355

    Article  CAS  Google Scholar 

  14. Liu S, Liu C, Wang W, Cheng B, Yu J (2012) Nanoscale 4:3193–3199

    Article  CAS  Google Scholar 

  15. Zhang H, Xu P, Du G, Chen Z, Oh K, Pan D, Jiao Z (2011) Nano Res. 4:274–283

    Article  Google Scholar 

  16. Liu X, Pan L, Zhao Q, Lv T, Zhu G, Chen T, Lu T, Sun Z, Sun C (2012) Chem Eng J 183:238–243

    Article  CAS  Google Scholar 

  17. Madhusudan P, Yu J, Wang W, Cheng B, Liu G (2012) Dalton Trans 41:14345–14353

    Article  CAS  Google Scholar 

  18. Lopez T, Alvarez M, Tzompantzi F, Picquart M (2006) J Sol–Gel Sci Technol 37:207–211

    Article  CAS  Google Scholar 

  19. Doong RA, Chen CH, Maithreepala RA, Chang SM (2001) Water Res 35:2873–2880

    Article  CAS  Google Scholar 

  20. Yan JH, Yao MH, Zhang L, Tang YG, Yang HH (2011) J Cent South Univ T 18:56–62

    Article  CAS  Google Scholar 

  21. Cai T, LIiao Y, Peng Z, Long Y, Wei Z, Deng Q (2009) J Environ Sci 21:997–1004

    Article  CAS  Google Scholar 

  22. Mi YK, Jae SC, Todd JT, Eun SJ, Sang WH, Viviane S, Jihua C (2013) Catalysts 3:88–103

    Article  Google Scholar 

  23. Zelner M, Minti H, Reisfeld R, Cohen H, Tenne R (1997) J Mater Chem 9:2541–2543

    Article  CAS  Google Scholar 

  24. Sashchiuk A, Lifshitz E, Reisfeld R, Saraidarov T, Zelner M, Willenz A (2001) J Sol–Gel Sci Technol 24:31–38

    Article  Google Scholar 

  25. Navio JA, Hidalgo MC, Col′on G, Botta SG, Litter MI (2001) Langmuir 17:202–210

    Article  CAS  Google Scholar 

  26. Emeline A, Kataeva GV, Litke AS, Rudakova AV, Ryabchuk VK, Serpone N (1998) Langmuir 14:5011–5022

    Article  CAS  Google Scholar 

  27. Hummers WS, Offeman RE (1958) J Am Chem Soc 80:1339

    Article  CAS  Google Scholar 

  28. Xiu-Zhi T, Wenjuan L, Zhong-Zhen Y, Mohammad AR, Javad RFY, Nikhil K (2011) Carbon 49:1258–1265

    Article  Google Scholar 

  29. Lupo F, Kamalakaran R, Scheu C, Grobert N, Rühle M (2004) Sci Dir Carb 42:1995–1999

    CAS  Google Scholar 

  30. Mishra M, Kuppusami P, Singh A, Ramya S, Sivasubramanian V, Mohandas E (2012) Appl Surf Sci 258:5157–5165

    Article  CAS  Google Scholar 

  31. Bo R, Meiqing F, Jun W, Xiaoyan J (2011) Solid State Sci 13:1594–1598

    Article  Google Scholar 

  32. Benedetti A, Fagherazzi G, Pinna F (1989) J Am Ceram Soc 72:467–469

    Article  CAS  Google Scholar 

  33. Siu GG, Stokes MJ (1999) Phys Rev 59:3173–3179

    Article  CAS  Google Scholar 

  34. Damilola AD, Madhivanan M, Gerardine GB (2010) J Phys Chem B 114:9323–9329

    Article  Google Scholar 

  35. Murphy AB (2007) Sol Energy Mater Sol Cells 91:1326–1337

    Article  CAS  Google Scholar 

  36. Zhang XY, Li HP, Xiao LC, Yuehe L (2010) J Mater Chem 20:2801–2806

    Article  CAS  Google Scholar 

  37. Fox MA, Dulay MT (1993) Chem Rev 93:341–357

    Article  CAS  Google Scholar 

  38. Yu PZ, Jun JX, Zhi HS, Chen ZL, Chun XP (2011) Prog Nat Sci: Mater Inter 21:467–471

    Article  Google Scholar 

  39. Cao SY, Chen CS, Ning XT, Zeng B, Xie XD, Chen XH, Wei SS, Mei YP, Zhao GJ (2013) Integr Ferroelectr: Int J 145:40–45

    Article  CAS  Google Scholar 

Download references

Acknowledgments

One of author Sumita Rani is thankful to Department of Science and Technology (DST), India for funding support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mukesh Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rani, S., Kumar, M., Sharma, S. et al. Effect of Graphene in Enhancing the Photo Catalytic Activity of Zirconium Oxide. Catal Lett 144, 301–307 (2014). https://doi.org/10.1007/s10562-013-1125-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-013-1125-0

Keywords

Navigation