Catalysis Letters

, Volume 144, Issue 2, pp 301–307 | Cite as

Effect of Graphene in Enhancing the Photo Catalytic Activity of Zirconium Oxide

  • Sumita Rani
  • Mukesh Kumar
  • Sumit Sharma
  • Dinesh Kumar
  • Sachin Tyagi


Graphene, have two-dimensional structure with high conductivity, extremely high specific surface area and superior electron mobility etc. It has been regarded as an important synthesis material for various composite materials used in many applications. Especially, graphene-based semiconductor photo catalysts have attracted extensive attention because of their usefulness in environmental applications such as air cleanup, water disinfection, hazardous waste remediation, and water purification. The present study involves the photo catalytic degradation of methyl orange by photo catalytic process using different concentrations of ZrO2/graphene synthesized at different annealing temperature. A series of zirconium oxide (ZrO2, zirconia) and graphene (Gr) composites with different contents of Gr (5.7, 7.3, 8.3 %) in the composite were synthesized using zirconium oxychloride (ZrOCl2·8H2O) and graphene oxide as the starting materials. The photocatalytic activities of the synthesized composites were measured for the degradation of methyl orange dye with UV spectroscopy. The rate of decolorization was recorded with respect to the change in intensity of absorption peaks for methyl orange. The absorption peaks, diminished and finally disappeared during reaction, indicating that the dye had been degraded. The photocatalytic activity is strongly affected by the concentration of graphene in the ZrO2. The synthesized ZrO2/graphene photocatalysts are characterized by X-ray diffraction, TGA, Raman spectroscopy and UV–Visible spectroscopy. Finally, it has been concluded that graphene when employed as catalytic support for ZrO2 boost its photo catalytic efficiency.

Graphical Abstract

Effect of graphene on photo catalytic activity of ZrO2 anneal at 1,000 °C.


Photo catalytic Graphene oxide ZrO2 XRD UV–Visible spectroscopy 



One of author Sumita Rani is thankful to Department of Science and Technology (DST), India for funding support.


  1. 1.
    Manoj AL, Shaji V, Santhosh SN (2012) Photocatalytic water treatment by titanium dioxide: recent updates. Catalysts 2:572–601CrossRefGoogle Scholar
  2. 2.
    Meng NC, Bo J, Christopher WKC, Chris S (2010) Recent developments in photocatalytic water treatment technology: a review. Water Res 44:2997–3027CrossRefGoogle Scholar
  3. 3.
    Kuo WG (1992) Water Res 26:881CrossRefGoogle Scholar
  4. 4.
    Huston P, Pignatello JJ (1999) Water Res 33:1238CrossRefGoogle Scholar
  5. 5.
    Xiang Q, Yu J, Jaroniec M (2012) Chem Soc Rev 41:782–796CrossRefGoogle Scholar
  6. 6.
    Xiang Q, Yu J, Wong PK (2011) J Colloid Interface Sci 357:163–167CrossRefGoogle Scholar
  7. 7.
    Wang W, Yu J, Xiang Q, Cheng B (2012) Applied catalysis B. Environ 119–120:109–116Google Scholar
  8. 8.
    Xiang Q, Yu J (2013) J Phys Chem Lett 4:753–759CrossRefGoogle Scholar
  9. 9.
    Williams G, Seger B, Kamat PV (2008) ACS Nano 2:1487–1491CrossRefGoogle Scholar
  10. 10.
    Zhang H, Lv X, Li Y, Wang Y, Li J (2010) ACS Nano 4:380–386CrossRefGoogle Scholar
  11. 11.
    Xiang Q, Yu J, Jaroniec M (2012) J Am Chem Soc 134:6575–6578CrossRefGoogle Scholar
  12. 12.
    Stoller MD, Park S, Zhu Y, An J, Ruoff RS (2008) Nano Lett 8:3498–3502CrossRefGoogle Scholar
  13. 13.
    Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer HL (2008) Solid State Commun 146:351–355CrossRefGoogle Scholar
  14. 14.
    Liu S, Liu C, Wang W, Cheng B, Yu J (2012) Nanoscale 4:3193–3199CrossRefGoogle Scholar
  15. 15.
    Zhang H, Xu P, Du G, Chen Z, Oh K, Pan D, Jiao Z (2011) Nano Res. 4:274–283CrossRefGoogle Scholar
  16. 16.
    Liu X, Pan L, Zhao Q, Lv T, Zhu G, Chen T, Lu T, Sun Z, Sun C (2012) Chem Eng J 183:238–243CrossRefGoogle Scholar
  17. 17.
    Madhusudan P, Yu J, Wang W, Cheng B, Liu G (2012) Dalton Trans 41:14345–14353CrossRefGoogle Scholar
  18. 18.
    Lopez T, Alvarez M, Tzompantzi F, Picquart M (2006) J Sol–Gel Sci Technol 37:207–211CrossRefGoogle Scholar
  19. 19.
    Doong RA, Chen CH, Maithreepala RA, Chang SM (2001) Water Res 35:2873–2880CrossRefGoogle Scholar
  20. 20.
    Yan JH, Yao MH, Zhang L, Tang YG, Yang HH (2011) J Cent South Univ T 18:56–62CrossRefGoogle Scholar
  21. 21.
    Cai T, LIiao Y, Peng Z, Long Y, Wei Z, Deng Q (2009) J Environ Sci 21:997–1004CrossRefGoogle Scholar
  22. 22.
    Mi YK, Jae SC, Todd JT, Eun SJ, Sang WH, Viviane S, Jihua C (2013) Catalysts 3:88–103CrossRefGoogle Scholar
  23. 23.
    Zelner M, Minti H, Reisfeld R, Cohen H, Tenne R (1997) J Mater Chem 9:2541–2543CrossRefGoogle Scholar
  24. 24.
    Sashchiuk A, Lifshitz E, Reisfeld R, Saraidarov T, Zelner M, Willenz A (2001) J Sol–Gel Sci Technol 24:31–38CrossRefGoogle Scholar
  25. 25.
    Navio JA, Hidalgo MC, Col′on G, Botta SG, Litter MI (2001) Langmuir 17:202–210CrossRefGoogle Scholar
  26. 26.
    Emeline A, Kataeva GV, Litke AS, Rudakova AV, Ryabchuk VK, Serpone N (1998) Langmuir 14:5011–5022CrossRefGoogle Scholar
  27. 27.
    Hummers WS, Offeman RE (1958) J Am Chem Soc 80:1339CrossRefGoogle Scholar
  28. 28.
    Xiu-Zhi T, Wenjuan L, Zhong-Zhen Y, Mohammad AR, Javad RFY, Nikhil K (2011) Carbon 49:1258–1265CrossRefGoogle Scholar
  29. 29.
    Lupo F, Kamalakaran R, Scheu C, Grobert N, Rühle M (2004) Sci Dir Carb 42:1995–1999Google Scholar
  30. 30.
    Mishra M, Kuppusami P, Singh A, Ramya S, Sivasubramanian V, Mohandas E (2012) Appl Surf Sci 258:5157–5165CrossRefGoogle Scholar
  31. 31.
    Bo R, Meiqing F, Jun W, Xiaoyan J (2011) Solid State Sci 13:1594–1598CrossRefGoogle Scholar
  32. 32.
    Benedetti A, Fagherazzi G, Pinna F (1989) J Am Ceram Soc 72:467–469CrossRefGoogle Scholar
  33. 33.
    Siu GG, Stokes MJ (1999) Phys Rev 59:3173–3179CrossRefGoogle Scholar
  34. 34.
    Damilola AD, Madhivanan M, Gerardine GB (2010) J Phys Chem B 114:9323–9329CrossRefGoogle Scholar
  35. 35.
    Murphy AB (2007) Sol Energy Mater Sol Cells 91:1326–1337CrossRefGoogle Scholar
  36. 36.
    Zhang XY, Li HP, Xiao LC, Yuehe L (2010) J Mater Chem 20:2801–2806CrossRefGoogle Scholar
  37. 37.
    Fox MA, Dulay MT (1993) Chem Rev 93:341–357CrossRefGoogle Scholar
  38. 38.
    Yu PZ, Jun JX, Zhi HS, Chen ZL, Chun XP (2011) Prog Nat Sci: Mater Inter 21:467–471CrossRefGoogle Scholar
  39. 39.
    Cao SY, Chen CS, Ning XT, Zeng B, Xie XD, Chen XH, Wei SS, Mei YP, Zhao GJ (2013) Integr Ferroelectr: Int J 145:40–45CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Sumita Rani
    • 1
  • Mukesh Kumar
    • 1
  • Sumit Sharma
    • 1
  • Dinesh Kumar
    • 1
  • Sachin Tyagi
    • 2
  1. 1.Electronic Science DepartmentKurukshetra UniversityKurukshetraIndia
  2. 2.Central Scientific Instruments OrganizationChandigarhIndia

Personalised recommendations