Advertisement

Catalysis Letters

, Volume 144, Issue 1, pp 172–180 | Cite as

Vanadium-Substituted Wells-Dawson Heteropolyacid as Catalyst for Liquid Phase Oxidation of 1,4-Dihydropyridine Derivative

  • Laura M. Sanchez
  • Ángel G. Sathicq
  • Graciela T. Baronetti
  • Horacio J. Thomas
  • Gustavo P. Romanelli
Article

Abstract

H7P2W17VO62.25H2O Wells-Dawson heteropolyacid was prepared, characterized and evaluated as catalyst in a 1,4-dihydropyridine oxidation reaction. The optimal conditions are the following: 1 mmol% of HWDV, a molar ratio 1,4-DHP:H2O2 (1:10) at reflux of acetonitrile. A conversion of 98.6 % is achieved in only 120 min of reaction.

Graphical Abstract

Keywords

Heteropolyacid Oxidation 1,4-dihydropyridine Hydrogen peroxide 

Notes

Acknowledgments

The authors thank to CONICET, Agencia Nacional de Promoción Científica y Tecnológica (Argentina), Comisión de Investigaciones Científicas (CIC), and Universidad Nacional de La Plata for financial support. AGS, GPR, GTB and HJT are members of CONICET.

References

  1. 1.
    Mizuno N, Misono M (1994) J Mol Catal 86:319CrossRefGoogle Scholar
  2. 2.
    Weber RS (1994) J Phys Chem 98:2999CrossRefGoogle Scholar
  3. 3.
    Briand LE, Thomas HJ, Baronetti GT (2000) Appl Catal A 201:191CrossRefGoogle Scholar
  4. 4.
    Baronetti G, Briand L, Sedran U, Thomas H (1998) Appl Catal A 172:265CrossRefGoogle Scholar
  5. 5.
    Bennardi DO, Ruiz DM, Romanelli GP, Baronetti GT, Thomas HJ, Autino JC (2008) Lett Org Chem 5:607CrossRefGoogle Scholar
  6. 6.
    Romanelli GP, Bennardi DO, Ruiz DM, Baronetti GT, Thomas HJ, Autino JC (2004) Tetrahedron Lett 45:8935CrossRefGoogle Scholar
  7. 7.
    Sathicq A, Romanelli G, Ponzinibbio A, Baronetti G, Thomas HJ (2010) Lett Org Chem 7:511CrossRefGoogle Scholar
  8. 8.
    Sanchez LM, Sathicq A, Jios JL, Baronetti G, Thomas HJ, Romanelli GP (2011) Tetrahedron Lett 52:4412CrossRefGoogle Scholar
  9. 9.
    Sanchez LM, Sathicq A, Baronetti G, Thomas HJ, Romanelli GP (2013) Can J Chem 91:137CrossRefGoogle Scholar
  10. 10.
    Love B, Goodman M, Snader K, Tedechi R, Macko E (1974) J Med Chem 17:956CrossRefGoogle Scholar
  11. 11.
    Bossert F, Meyer H, Wehinger E (1981) Angew Chem Int Ed Engl 20:762CrossRefGoogle Scholar
  12. 12.
    Breitenbucher JG, Figliozz G (2000) Tetrahedron Lett 41:4311CrossRefGoogle Scholar
  13. 13.
    Briukanov VM (1994) Exp Clin Pharmacology 57:47Google Scholar
  14. 14.
    Bahekar S, Devanand S (2002) Acta Pharamaceutica (Zagreb) 52(4):281Google Scholar
  15. 15.
    Wachter GA, Davis MC (1998) J Med Chem 41:2436CrossRefGoogle Scholar
  16. 16.
    Gullapalli S, Ramarao P (2002) Neuropharmacology 42:467CrossRefGoogle Scholar
  17. 17.
    Henry GH (2004) Tetrahedron 60:6043CrossRefGoogle Scholar
  18. 18.
    Li AH, Moro S, Forsyth N, Melman N, Ji X, Jacobson KA (1999) J Med Chem 42:706CrossRefGoogle Scholar
  19. 19.
    Bocker RH, Guengerich FP (1986) J Med Chem 29:1596CrossRefGoogle Scholar
  20. 20.
    Kudo S, Okumura H, Miyamoto G, Ishizaki T (1999) Drug Metab Dispos 27:303Google Scholar
  21. 21.
    Vacher B, Bonnaud B, Funes P, Jubault N, Koek W, Assié MB, Cosi C, Kleven M (1999) J Med Chem 42:1648CrossRefGoogle Scholar
  22. 22.
    Choi WB, Houpis IN, Churchill HRO, Molina A, Lynch JE, Volante RP, Reider PJ, King AO (1995) Tetrahedron Lett 36:4571CrossRefGoogle Scholar
  23. 23.
    Kozhevnikov VN, Kozhevnikov DN, Nikitina TV, Rusinov VL, Chupakhin ON, Zabel M, König B (2003) J Org Chem 68:2882CrossRefGoogle Scholar
  24. 24.
    Das Sharma S, Hazarika P, Konwar D (2008) Catal Comm 9:709CrossRefGoogle Scholar
  25. 25.
    Kumar A, Maurya RA, Sharma S (2009) Bioorg Med Chem Lett 19:4432CrossRefGoogle Scholar
  26. 26.
    Filipan-Litvic M, Litvic M, Vinkovic V (2008) Bioorg Med Chem 16:9276CrossRefGoogle Scholar
  27. 27.
    Filipan-Litvic M, Litvic M, Vinkovic V (2008) Tetrahedron 64:5649CrossRefGoogle Scholar
  28. 28.
    Anniyappan M, Muralidharan D, Perumal P (2002) Tetrahedron 58:5069CrossRefGoogle Scholar
  29. 29.
    Heravi MM, Derikvand F, Hassan-Pour S, Bakhtiari K, Bamoharram FF, Oskooie HA (2007) Bioorg Med Chem Lett 17:3305CrossRefGoogle Scholar
  30. 30.
    Sheldon R (1991) ChemTech 9:566Google Scholar
  31. 31.
    Chavan SP, Kharul RK, Kalkote UR, Shivakumar I (2003) Synthetic Comm 33:1333CrossRefGoogle Scholar
  32. 32.
    Dermeche L, Salhi N, Hocine S, Thouvenot R, Rabia C (2012) J Mol Catal A 356:29CrossRefGoogle Scholar
  33. 33.
    Massart R, Contant R, Fruchart JM, Ciabrini JP, Fournier M (1977) Inorg Chem 16:2916CrossRefGoogle Scholar
  34. 34.
    Tayebee R, Nehzat F, Rezaei-Seresht E, Mohammadi FZ, Rafiee E (2011) J Mol Catal A 351:154CrossRefGoogle Scholar
  35. 35.
    Tong X, Zhu W, Wu Q, Qian X, Liu Z, Yan W, Gong J (2011) J Alloys Compd 509:7768CrossRefGoogle Scholar
  36. 36.
    Park DR, Park S, Bang Y, Song IK (2010) Appl Catal A 373:201CrossRefGoogle Scholar
  37. 37.
    Harmalker S, Leparulo M, Pope M (1983) J Am Chem Soc 105:4286CrossRefGoogle Scholar
  38. 38.
    Cid R, Pecchi G (1985) Appl Catal 14:15CrossRefGoogle Scholar
  39. 39.
    Shaabani A, Rezayan AH (2007) Catal Comm 8:1112CrossRefGoogle Scholar
  40. 40.
    Sharbatdaran M, Foruzin LJ, Farzaneh F, Larijani MM (2013) C R Chimie 16:176CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Laura M. Sanchez
    • 1
  • Ángel G. Sathicq
    • 1
  • Graciela T. Baronetti
    • 2
  • Horacio J. Thomas
    • 3
  • Gustavo P. Romanelli
    • 1
  1. 1.Centro de Investigación y Desarrollo en Ciencias Aplicadas “Dr. J.J. Ronco” (CINDECA), Departamento de Química, Facultad de Ciencias ExactasUNLP-CCT-CONICETLa PlataArgentina
  2. 2.Departamento de Ingeniería Química, Facultad de IngenieríaUniversidad de Buenos AiresBuenos AiresArgentina
  3. 3.Planta Piloto Multipropósito PlaPiMu, UNLP-CICPBAManuel B. GonnetArgentina

Personalised recommendations