Catalysis Letters

, Volume 143, Issue 12, pp 1346–1353 | Cite as

An Efficient Catalyst for the Conversion of Fructose into Methyl Levulinate

  • Yan Liu
  • Chun-Ling Liu
  • Hai-Zhen Wu
  • Wen-Sheng Dong


The catalytic alcoholysis of fructose in methanol to methyl levulinate was performed by using phosphotungstic acid iron catalysts. The catalysts were characterized by powder X-ray diffraction, infrared spectroscopy, and X-ray fluorescence spectroscopy. The results showed that the exchanging of H+ with Fe3+ ions could modify the acidity of H3PW12O40 and introduce some Lewis acidity into the molecules. The highest yield of methyl levulinate was obtained over the Fe-HPW-1 catalyst. This catalyst showed 100 % fructose conversion with 73.7 % yield of methyl levulinate at 130 °C, 2 MPa for 2 h, and it could be reused at least five times without obvious loss of activity. The results suggest that the combination of Brønsted acidity with some Lewis acidity could effectively promote the conversion of fructose in methanol to methyl levulinate.

Graphical Abstract


Fructose Methyl levulinate Methanol Phosphotungstic acid salts 



This work was financially supported by the National Natural Science Foundation of China (Grant No. 20976101), the Program for Key Science and Technology Innovation Team of Shaanxi Province (2012KCT-21), the Program for Changjiang Scholars and Innovative Research Team in University of China (IRT1070).


  1. 1.
    Balat M, Balat H (2010) Appl Energy 87:1815CrossRefGoogle Scholar
  2. 2.
    Naik SN, Goud VV, Rout PK, Dalai AK (2010) Energy Rev 14:578Google Scholar
  3. 3.
    Govindaswamy S, Vane LM (2010) Bioresour Technol 101:1277CrossRefGoogle Scholar
  4. 4.
    Girisuta B, Janssen LPBM, Heeres HJ (2006) Chem Eng Res Des 84:339CrossRefGoogle Scholar
  5. 5.
    Huber GW, Iborra S, Corma A (2006) Chem Rev 106:4044CrossRefGoogle Scholar
  6. 6.
    Clark JH, Budarin V, Deswarte FEI, Hardy JJE, Kerton FMFM, Hunt AJ, Luque R, Macquarrie DJ, Milkowski K, Rodriguez A, Samuel O, Tavener SJ, White RJ, Wilson AJ (2006) Green Chem 8:853CrossRefGoogle Scholar
  7. 7.
    Corma A, Iborra S, Velty A (2007) Chem Rev 107:2411CrossRefGoogle Scholar
  8. 8.
    Digman B, Joo HS, Kim DS (2009) Environ Prog Sustain Energy 28:47CrossRefGoogle Scholar
  9. 9.
    Lange JP, Price R, Ayoub PM, Louis J, Petrus L, Clarke L, Gosselink H (2010) Angew Chem Int Ed 49:4479CrossRefGoogle Scholar
  10. 10.
    Hayes DJ (2009) Catal Today 145:138CrossRefGoogle Scholar
  11. 11.
    Olson ES, Kjelden MR, Schlag AJ (2001) ACS Symp Ser 784:51CrossRefGoogle Scholar
  12. 12.
    Mascal M, Nikitin EB (2010) Green Chem 12:370CrossRefGoogle Scholar
  13. 13.
    Le Van Mao R, Zhao Q, Dima G, Petraccone D (2011) Catal Lett 141:271CrossRefGoogle Scholar
  14. 14.
    Yaaini N, Amin NAS, Asmadi M (2012) Bioresour Technol 116:58CrossRefGoogle Scholar
  15. 15.
    Hegner J, Pereira KC, DeBoef B, Lucht BL (2010) Tetrahedron Lett 51:2356CrossRefGoogle Scholar
  16. 16.
    Hu X, Li CZ (2011) Green Chem 13:1676CrossRefGoogle Scholar
  17. 17.
    Peng L, Lin L, Zhang J, Zhang B, Gong Y (2010) Molecules 15:5258CrossRefGoogle Scholar
  18. 18.
    Saravanamurugan S, Van Nguyen Buu O, Riisager A (2011) ChemSusChem 4:723CrossRefGoogle Scholar
  19. 19.
    Saravanamurugan S, Riisager A (2012) Catal Commun 17:71CrossRefGoogle Scholar
  20. 20.
    Peng L, Lin L, Zhang J, Shi J, Li S (2011) Appl Catal A 397:259CrossRefGoogle Scholar
  21. 21.
    Tominaga K, Mori A, Fukushima Y, Shimada S, Sato K (2011) Green Chem 13:810CrossRefGoogle Scholar
  22. 22.
    Rataboul F, Essayem N (2011) Ind Eng Chem Res 50:799CrossRefGoogle Scholar
  23. 23.
    Wu XY, Fu J, Lu XY (2012) Carbohydr Res 358:37CrossRefGoogle Scholar
  24. 24.
    Peng LC, Lin L, Li H, Yang QL (2011) Appl Energy 88:4590CrossRefGoogle Scholar
  25. 25.
    Mascal M, Nikitin EB (2010) ChemSusChem 3:1349CrossRefGoogle Scholar
  26. 26.
    Peng L, Lin L, Li H (2012) Ind Crops Prod 40:136CrossRefGoogle Scholar
  27. 27.
    Shimizu K-i, Niimi K, Satsuma A (2008) Appl Catal A: Gen 349:1CrossRefGoogle Scholar
  28. 28.
    Shimizu K-I, Furukawa H, Kobayashi N, Itay Y, Satsuma A (2009) Green Chem 11:1627CrossRefGoogle Scholar
  29. 29.
    Shimizu K-i, Niimi K, Satsuma A (2008) Catal Commun 9:980CrossRefGoogle Scholar
  30. 30.
    Okuhara T (2002) Chem Rev 102:3641CrossRefGoogle Scholar
  31. 31.
    Kozhevnikov IV (1998) Chem Rev 98:171CrossRefGoogle Scholar
  32. 32.
    Zhu S, Gao X, Dong F, Zhu Y, Zheng H, Li Y (2013) J Catal 306:155CrossRefGoogle Scholar
  33. 33.
    Misono M, Ono I, Koyano G, Aoshima A (2000) Pure Appl Chem 72:1305CrossRefGoogle Scholar
  34. 34.
    Fan C, Guan H, Zhang H, Wang J, Wang S, Wang X (2011) Biomass Bioenerg 35:2659CrossRefGoogle Scholar
  35. 35.
    Jia X, Ma J, Che P, Lu F, Miao H, Gao J, Xu J (2013) J Energ Chem 22:93CrossRefGoogle Scholar
  36. 36.
    Wang FF, Liu CL, Dong WS (2013) Green Chem 15:2091CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Yan Liu
    • 1
  • Chun-Ling Liu
    • 1
  • Hai-Zhen Wu
    • 2
  • Wen-Sheng Dong
    • 1
  1. 1.Key Laboratory of Applied Surface and Colloid Chemistry (SNNU), MOE, School of Chemistry and Chemical EngineeringShaanxi Normal UniversityXi’anChina
  2. 2.College of Chemistry Life ScienceWeinan Normal UniversityWeinanChina

Personalised recommendations