Advertisement

Catalysis Letters

, Volume 143, Issue 12, pp 1354–1361 | Cite as

Topological and Electronic Structure of Heterocyclic Compounds Adsorbed on Hydrotreating Catalysts

  • Diego Valencia
  • Roberto Olivares-Amaya
  • Jorge Aburto
  • Isidoro García-Cruz
Article

Abstract

We studied the electronic structure of the adsorption of S- and N-containing aromatic compounds present in crude oils on MoS2 and WS2 clusters by means of all-electron DFT methods. The aim of this work is to understand results related to the hydrotreating catalyst poisoning by quinoline. We studied the adsorption of the organic compounds by flat (π) and perpendicular (σ) adsorption on each cluster catalyst. The calculated adsorption energies indicated that π-adsorption was more favorable over σ-adsorption. In the σ mode, quinoline presented the largest adsorption energy, which led to understand the poisoning of the catalysts. We performed electron localization function (ELF) studies on the molecules adsorbed on a perpendicular orientation. We showed methyl-substituted compounds had a weaker S-{Mo,W} bond due to steric hindrance. Furthermore, atoms-in-molecules (AIM) calculations at the critical points (i.e. {S,N}-{Mo,W} interfaces) revealed a correlation between electron density and Laplacian of the electron density at this region and the adsorption energy. Ellipticity (ε) studies revealed structural information of binding at these sites, as well as the competition between S- and N-containing compounds. Similarly, ε showed that methyl-containing compounds had a very distinct character than non-substituted ones, thus revealing the importance of steric effects. Analytic tools such as ELF and AIM provide correlations between the experimental observations and properties. We find these studies can be further used to understand other catalytic phenomena.

Graphical Abstract

Keywords

DFT ELF Ellipticity DBT Quinoline Hydrodesulfurization Poisoning 

Notes

Acknowledgments

The authors wish to thank Departamento de Supercómputo de la Dirección General de Cómputo y de Tecnologías de la Información y Comunicación (DGTIC) de la UNAM and LUFAC Computación S. A. de C. V. for CPU time. Proyecto Universitario de Nanotecnología Ambiental (PUNTA) IMPULSA is gratefully acknowledged. D.V. also acknowledges Instituto Mexicano del Petróleo for their kind hospitality. R.O.A. is thankful for the support of CONACYT and Fundación México en Harvard A.C.

References

  1. 1.
  2. 2.
    Zaera F (2002) Acc Chem Res 35:129CrossRefGoogle Scholar
  3. 3.
    Song C (2003) Catal Today 86:211CrossRefGoogle Scholar
  4. 4.
    Valencia D, Klimova T (2013) Appl Catal B Environ 129:137CrossRefGoogle Scholar
  5. 5.
    Niquille-Röthlisberger A, Prins R (2007) Top Catal 46:65CrossRefGoogle Scholar
  6. 6.
    Ho TC, Sobel J (2005) Catal Lett 99:109CrossRefGoogle Scholar
  7. 7.
    Ho TC, Nguyen D (2004) J Catal 222:450CrossRefGoogle Scholar
  8. 8.
    Kwak C, Lee JJ, Bae JS, Moon SH (2001) Appl Catal B Environ 35:59CrossRefGoogle Scholar
  9. 9.
    Ho TC (2003) J Catal 219:442CrossRefGoogle Scholar
  10. 10.
    Ozkan US, Ni S, Zhang L, Moctezuma E (1994) Energy Fuels 8:249CrossRefGoogle Scholar
  11. 11.
    Christensen CH, Nørskov JK (2008) J Chem Phys 128:182503CrossRefGoogle Scholar
  12. 12.
    Schweiger H, Raybaud P, Kresse G, Toulhoat H (2002) J Catal 207:76CrossRefGoogle Scholar
  13. 13.
    Prodhomme PY, Raybaud P, Toulhoat H (2011) J Catal 280:178CrossRefGoogle Scholar
  14. 14.
    Paul JF, Payen P (2003) J Phys Chem B 107:4057CrossRefGoogle Scholar
  15. 15.
    Moses PG, Hinnemann B, Topsoe H, Norskov JK (2007) J Catal 248:188CrossRefGoogle Scholar
  16. 16.
    Helveg S, Lauritsen JV, Lægsgaard E, Stensgaard I, Nørskov JK, Clausen BS, Topsøe H, Besenbacher F (2000) Phys Rev Lett 84:951CrossRefGoogle Scholar
  17. 17.
    Kibsgaard J, Lauritsen JV, Lægsgaard E, Clausen BS, Topsøe H, Besenbacher F (2006) J Am Chem Soc 128:13950CrossRefGoogle Scholar
  18. 18.
    Gemming S, Seifert G (2007) Nat Nanotech 2:21CrossRefGoogle Scholar
  19. 19.
    Raybaud P, Hafner J, Kresse G, Kasztelan S, Toulhoat H (2000) J Catal 190:128CrossRefGoogle Scholar
  20. 20.
    Sun M, Nelson AE, Adjaye J (2004) J Catal 226:41CrossRefGoogle Scholar
  21. 21.
    Krebs E, Silvi B, Daudinc A, Raybaud P (2008) J Catal 260:276CrossRefGoogle Scholar
  22. 22.
    Lauritsen JV, Bollinger MV, Lægsgaard E, Jacobsen KW, Nørskov JK, Clausen BS, Topsøe H, Besenbacher F (2004) J Catal 221:510CrossRefGoogle Scholar
  23. 23.
    Wen X-D, Zeng T, Li Y-W, Wang J, Jiao H (2005) J Phys Chem B 109:18491CrossRefGoogle Scholar
  24. 24.
    Joshi YV, Ghosh P, Daage M, Delgass WN (2008) J Catal 257:71CrossRefGoogle Scholar
  25. 25.
    García-Cruz I, Valencia D, Klimova T, Oviedo-Roa R, Martínez-Magadán JM, Gómez-Balderas R, Illas F (2008) J Mol Catal A 281:79CrossRefGoogle Scholar
  26. 26.
    Girgis MJ, Gates BC (1991) Ind Eng Chem Res 30:2021CrossRefGoogle Scholar
  27. 27.
    Yang H, Fairbridge C, Ring Z (2003) Energy Fuels 17:387CrossRefGoogle Scholar
  28. 28.
    Song C, Ma X (2003) Appl Catal B Environ 41:207CrossRefGoogle Scholar
  29. 29.
    Cristol S, Paul J-F, Payen E, Bougeard D, Hutschka F, Clémendot S (2004) J Catal 224:138CrossRefGoogle Scholar
  30. 30.
    Yang H, Fairbridge C, Chen J, Ring Z (2004) Catal Lett 97:217CrossRefGoogle Scholar
  31. 31.
    Li N, Ma X, Zha Q, Song C (2010) Energy Fuels 24:5539CrossRefGoogle Scholar
  32. 32.
    Kim DH, Choi DS, Hong S, Kim S (2008) J Phys Chem C 112:7412CrossRefGoogle Scholar
  33. 33.
    Abdallah WA, Nelson AE (2005) J Phys Chem B 109:10863CrossRefGoogle Scholar
  34. 34.
    Temel B, Tuxen AK, Kibsgaard J, Topsøe N-Y, Hinnemann B, Knudsen KG, Topsøe H, Lauritsen JV, Besenbacher F (2010) J Catal 271:280CrossRefGoogle Scholar
  35. 35.
    Becke AD, Edgecombe KE (1990) J Chem Phys 92:5397CrossRefGoogle Scholar
  36. 36.
    Savin A, Becke AD, Flad J, Nesper R (1991) Angew Chem Int Ed 30:409CrossRefGoogle Scholar
  37. 37.
    Savin A, Nesper R, Wengert S, Fässler TF (1997) Angew Chem Int Ed 36:1808CrossRefGoogle Scholar
  38. 38.
    Fuster A, Savin A, Silvi B (2000) J Phys Chem A 104:852CrossRefGoogle Scholar
  39. 39.
    Amador-Bedolla C, Salomón-Ferrer R, Lester WA Jr, Vázquez-Martínez JA, Aspuru-Guzik A (2007) J Chem Phys 126:204308CrossRefGoogle Scholar
  40. 40.
    Rizhikov MR, Kozlova SG, Konchenko SN (2009) J Phys Chem A 113:474CrossRefGoogle Scholar
  41. 41.
    Aray Y, Rodríguez J, Beatriz Vidal A, Coll S (2007) J Mol Catal A 271:105CrossRefGoogle Scholar
  42. 42.
    Soriano A, Roquero P, Klimova T (2010) Stud Surf Sci Catal 175:525CrossRefGoogle Scholar
  43. 43.
    Ma X, Schobert HH (2000) J Mol Catal A: Chem 160:409CrossRefGoogle Scholar
  44. 44.
    Hensen EJM, Kooyman PJ, van der Meer Y, van der Kraan AM, de Beer VHJ, van Veen JAR, van Santen RA (2001) J Catal 199:224CrossRefGoogle Scholar
  45. 45.
    Perdew JP, Wang Y (1992) Phys Rev B 45:13244CrossRefGoogle Scholar
  46. 46.
    van Lenthe E, Baerends EJ (2003) J Comp Chem 24:1142CrossRefGoogle Scholar
  47. 47.
  48. 48.
    Bader F (1990) Atoms in molecules: a quantum theory. Clarendon, New YorkGoogle Scholar
  49. 49.
    Silva López C, Nieto Faza O, Cossío FP, York DM, de Lera AR (2005) Chem Eur J 11:1734CrossRefGoogle Scholar
  50. 50.
    Bader RFW, Slee TS, Cremer D, Kraka E (1983) J Am Chem Soc 105:5061CrossRefGoogle Scholar
  51. 51.
    Cremer D, Kraka E, Slee TS, Bader RFW, Lau CDH, Nguyen-Dang TT, MacDougall PJ (1983) J Am Chem Soc 105:5069CrossRefGoogle Scholar
  52. 52.
    Popelier PLA (1998) J Phys Chem A 102:1873CrossRefGoogle Scholar
  53. 53.
    Valencia D, Peña L, García-Cruz I (2012) Int J Quantum Chem 112:3599CrossRefGoogle Scholar
  54. 54.
    Thomas R, van Oers EM, de Beer VHJ, Medema J, Moulijn JA (1982) J Catal 76:241CrossRefGoogle Scholar
  55. 55.
    Wang H, Prins R (2009) J Catal 264:31CrossRefGoogle Scholar
  56. 56.
    Valencia D, Klimova T (2012) Catal Commun 21:77CrossRefGoogle Scholar
  57. 57.
    Valencia D, Klimova T (2011) Catal Today 166:91CrossRefGoogle Scholar
  58. 58.
    Rodríguez-Castellón E, Jiménez-López A, Eliche-Quesada D (2008) Fuel 87:1195CrossRefGoogle Scholar
  59. 59.
    Ma Z, Zaera F (2006) J Am Chem Soc 128:16414CrossRefGoogle Scholar
  60. 60.
    Valencia D, Klimova T, García-Cruz I (2012) Fuel 100:177CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Facultad de QuímicaUniversidad Nacional Autónoma de MéxicoMexicoMexico
  2. 2.Programa de Ingeniería MolecularInstituto Mexicano del PetróleoMexicoMexico
  3. 3.Department of Chemistry and Chemical BiologyHarvard UniversityCambridgeUSA
  4. 4.Department of ChemistryPrinceton UniversityPrincetonUSA
  5. 5.Programa de Procesos de TransformaciónInstituto Mexicano del PetróleoMexicoMexico

Personalised recommendations