Skip to main content
Log in

Topological and Electronic Structure of Heterocyclic Compounds Adsorbed on Hydrotreating Catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

We studied the electronic structure of the adsorption of S- and N-containing aromatic compounds present in crude oils on MoS2 and WS2 clusters by means of all-electron DFT methods. The aim of this work is to understand results related to the hydrotreating catalyst poisoning by quinoline. We studied the adsorption of the organic compounds by flat (π) and perpendicular (σ) adsorption on each cluster catalyst. The calculated adsorption energies indicated that π-adsorption was more favorable over σ-adsorption. In the σ mode, quinoline presented the largest adsorption energy, which led to understand the poisoning of the catalysts. We performed electron localization function (ELF) studies on the molecules adsorbed on a perpendicular orientation. We showed methyl-substituted compounds had a weaker S-{Mo,W} bond due to steric hindrance. Furthermore, atoms-in-molecules (AIM) calculations at the critical points (i.e. {S,N}-{Mo,W} interfaces) revealed a correlation between electron density and Laplacian of the electron density at this region and the adsorption energy. Ellipticity (ε) studies revealed structural information of binding at these sites, as well as the competition between S- and N-containing compounds. Similarly, ε showed that methyl-containing compounds had a very distinct character than non-substituted ones, thus revealing the importance of steric effects. Analytic tools such as ELF and AIM provide correlations between the experimental observations and properties. We find these studies can be further used to understand other catalytic phenomena.

Graphical Abstract

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. http://www.dieselnet.com/standards/fuels.php

  2. Zaera F (2002) Acc Chem Res 35:129

    Article  CAS  Google Scholar 

  3. Song C (2003) Catal Today 86:211

    Article  CAS  Google Scholar 

  4. Valencia D, Klimova T (2013) Appl Catal B Environ 129:137

    Article  CAS  Google Scholar 

  5. Niquille-Röthlisberger A, Prins R (2007) Top Catal 46:65

    Article  Google Scholar 

  6. Ho TC, Sobel J (2005) Catal Lett 99:109

    Article  CAS  Google Scholar 

  7. Ho TC, Nguyen D (2004) J Catal 222:450

    Article  CAS  Google Scholar 

  8. Kwak C, Lee JJ, Bae JS, Moon SH (2001) Appl Catal B Environ 35:59

    Article  CAS  Google Scholar 

  9. Ho TC (2003) J Catal 219:442

    Article  CAS  Google Scholar 

  10. Ozkan US, Ni S, Zhang L, Moctezuma E (1994) Energy Fuels 8:249

    Article  CAS  Google Scholar 

  11. Christensen CH, Nørskov JK (2008) J Chem Phys 128:182503

    Article  Google Scholar 

  12. Schweiger H, Raybaud P, Kresse G, Toulhoat H (2002) J Catal 207:76

    Article  CAS  Google Scholar 

  13. Prodhomme PY, Raybaud P, Toulhoat H (2011) J Catal 280:178

    Article  CAS  Google Scholar 

  14. Paul JF, Payen P (2003) J Phys Chem B 107:4057

    Article  CAS  Google Scholar 

  15. Moses PG, Hinnemann B, Topsoe H, Norskov JK (2007) J Catal 248:188

    Article  CAS  Google Scholar 

  16. Helveg S, Lauritsen JV, Lægsgaard E, Stensgaard I, Nørskov JK, Clausen BS, Topsøe H, Besenbacher F (2000) Phys Rev Lett 84:951

    Article  CAS  Google Scholar 

  17. Kibsgaard J, Lauritsen JV, Lægsgaard E, Clausen BS, Topsøe H, Besenbacher F (2006) J Am Chem Soc 128:13950

    Article  CAS  Google Scholar 

  18. Gemming S, Seifert G (2007) Nat Nanotech 2:21

    Article  CAS  Google Scholar 

  19. Raybaud P, Hafner J, Kresse G, Kasztelan S, Toulhoat H (2000) J Catal 190:128

    Article  CAS  Google Scholar 

  20. Sun M, Nelson AE, Adjaye J (2004) J Catal 226:41

    Article  CAS  Google Scholar 

  21. Krebs E, Silvi B, Daudinc A, Raybaud P (2008) J Catal 260:276

    Article  CAS  Google Scholar 

  22. Lauritsen JV, Bollinger MV, Lægsgaard E, Jacobsen KW, Nørskov JK, Clausen BS, Topsøe H, Besenbacher F (2004) J Catal 221:510

    Article  CAS  Google Scholar 

  23. Wen X-D, Zeng T, Li Y-W, Wang J, Jiao H (2005) J Phys Chem B 109:18491

    Article  CAS  Google Scholar 

  24. Joshi YV, Ghosh P, Daage M, Delgass WN (2008) J Catal 257:71

    Article  CAS  Google Scholar 

  25. García-Cruz I, Valencia D, Klimova T, Oviedo-Roa R, Martínez-Magadán JM, Gómez-Balderas R, Illas F (2008) J Mol Catal A 281:79

    Article  Google Scholar 

  26. Girgis MJ, Gates BC (1991) Ind Eng Chem Res 30:2021

    Article  CAS  Google Scholar 

  27. Yang H, Fairbridge C, Ring Z (2003) Energy Fuels 17:387

    Article  CAS  Google Scholar 

  28. Song C, Ma X (2003) Appl Catal B Environ 41:207

    Article  Google Scholar 

  29. Cristol S, Paul J-F, Payen E, Bougeard D, Hutschka F, Clémendot S (2004) J Catal 224:138

    Article  CAS  Google Scholar 

  30. Yang H, Fairbridge C, Chen J, Ring Z (2004) Catal Lett 97:217

    Article  CAS  Google Scholar 

  31. Li N, Ma X, Zha Q, Song C (2010) Energy Fuels 24:5539

    Article  CAS  Google Scholar 

  32. Kim DH, Choi DS, Hong S, Kim S (2008) J Phys Chem C 112:7412

    Article  CAS  Google Scholar 

  33. Abdallah WA, Nelson AE (2005) J Phys Chem B 109:10863

    Article  CAS  Google Scholar 

  34. Temel B, Tuxen AK, Kibsgaard J, Topsøe N-Y, Hinnemann B, Knudsen KG, Topsøe H, Lauritsen JV, Besenbacher F (2010) J Catal 271:280

    Article  CAS  Google Scholar 

  35. Becke AD, Edgecombe KE (1990) J Chem Phys 92:5397

    Article  CAS  Google Scholar 

  36. Savin A, Becke AD, Flad J, Nesper R (1991) Angew Chem Int Ed 30:409

    Article  Google Scholar 

  37. Savin A, Nesper R, Wengert S, Fässler TF (1997) Angew Chem Int Ed 36:1808

    Article  CAS  Google Scholar 

  38. Fuster A, Savin A, Silvi B (2000) J Phys Chem A 104:852

    Article  CAS  Google Scholar 

  39. Amador-Bedolla C, Salomón-Ferrer R, Lester WA Jr, Vázquez-Martínez JA, Aspuru-Guzik A (2007) J Chem Phys 126:204308

    Article  Google Scholar 

  40. Rizhikov MR, Kozlova SG, Konchenko SN (2009) J Phys Chem A 113:474

    Article  CAS  Google Scholar 

  41. Aray Y, Rodríguez J, Beatriz Vidal A, Coll S (2007) J Mol Catal A 271:105

    Article  CAS  Google Scholar 

  42. Soriano A, Roquero P, Klimova T (2010) Stud Surf Sci Catal 175:525

    Article  CAS  Google Scholar 

  43. Ma X, Schobert HH (2000) J Mol Catal A: Chem 160:409

    Article  CAS  Google Scholar 

  44. Hensen EJM, Kooyman PJ, van der Meer Y, van der Kraan AM, de Beer VHJ, van Veen JAR, van Santen RA (2001) J Catal 199:224

    Article  CAS  Google Scholar 

  45. Perdew JP, Wang Y (1992) Phys Rev B 45:13244

    Article  Google Scholar 

  46. van Lenthe E, Baerends EJ (2003) J Comp Chem 24:1142

    Article  Google Scholar 

  47. www.scm.com

  48. Bader F (1990) Atoms in molecules: a quantum theory. Clarendon, New York

    Google Scholar 

  49. Silva López C, Nieto Faza O, Cossío FP, York DM, de Lera AR (2005) Chem Eur J 11:1734

    Article  Google Scholar 

  50. Bader RFW, Slee TS, Cremer D, Kraka E (1983) J Am Chem Soc 105:5061

    Article  CAS  Google Scholar 

  51. Cremer D, Kraka E, Slee TS, Bader RFW, Lau CDH, Nguyen-Dang TT, MacDougall PJ (1983) J Am Chem Soc 105:5069

    Article  CAS  Google Scholar 

  52. Popelier PLA (1998) J Phys Chem A 102:1873

    Article  CAS  Google Scholar 

  53. Valencia D, Peña L, García-Cruz I (2012) Int J Quantum Chem 112:3599

    Article  CAS  Google Scholar 

  54. Thomas R, van Oers EM, de Beer VHJ, Medema J, Moulijn JA (1982) J Catal 76:241

    Article  CAS  Google Scholar 

  55. Wang H, Prins R (2009) J Catal 264:31

    Article  CAS  Google Scholar 

  56. Valencia D, Klimova T (2012) Catal Commun 21:77

    Article  CAS  Google Scholar 

  57. Valencia D, Klimova T (2011) Catal Today 166:91

    Article  CAS  Google Scholar 

  58. Rodríguez-Castellón E, Jiménez-López A, Eliche-Quesada D (2008) Fuel 87:1195

    Article  Google Scholar 

  59. Ma Z, Zaera F (2006) J Am Chem Soc 128:16414

    Article  CAS  Google Scholar 

  60. Valencia D, Klimova T, García-Cruz I (2012) Fuel 100:177

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Departamento de Supercómputo de la Dirección General de Cómputo y de Tecnologías de la Información y Comunicación (DGTIC) de la UNAM and LUFAC Computación S. A. de C. V. for CPU time. Proyecto Universitario de Nanotecnología Ambiental (PUNTA) IMPULSA is gratefully acknowledged. D.V. also acknowledges Instituto Mexicano del Petróleo for their kind hospitality. R.O.A. is thankful for the support of CONACYT and Fundación México en Harvard A.C.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Diego Valencia or Isidoro García-Cruz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valencia, D., Olivares-Amaya, R., Aburto, J. et al. Topological and Electronic Structure of Heterocyclic Compounds Adsorbed on Hydrotreating Catalysts. Catal Lett 143, 1354–1361 (2013). https://doi.org/10.1007/s10562-013-1090-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-013-1090-7

Keywords

Navigation