Catalysis Letters

, Volume 143, Issue 10, pp 1012–1017 | Cite as

Synthesis and Catalytic Performance of CeOCl in Deacon Reaction

  • Ramzi Farra
  • Frank Girgsdies
  • Wiebke Frandsen
  • Maike Hashagen
  • Robert Schlögl
  • Detre Teschner


Surface chlorinated CeO2 is an efficient material for HCl oxidation, which raises the question whether an oxychloride phase could be also active in the same reaction. CeOCl was synthesized by solid state reaction of cerium oxide with anhydrous cerium chloride and tested in HCl oxidation using various feed compositions at 703 K. X-ray diffraction of post-reaction samples revealed that CeOCl is unstable, in both oxygen-rich and -lean conditions. Applying oxygen over-stoichiometric feeds led to complete transformation of CeOCl into CeO2. Considerable HCl conversions were obtained only after this transformation, which confirms the essential role of bulk cerium oxide in this catalytic system.

Graphical Abstract

Phase transformation of CeOCl into CeO2 under Deacon reaction conditions


CeOCl CeO2 Deacon reaction HCl oxidation 


  1. 1.
    Weckhuysen BM, Rosynek MP, Lunsford JH (1999) Phys Chem Chem Phys 1:3157–3162CrossRefGoogle Scholar
  2. 2.
    Fajardie F, Tempere O, Manoli J-M, Djega-Mariadassou G, Blanchard G (1998) J Chem Soc, Faraday Trans 94:3727–3735CrossRefGoogle Scholar
  3. 3.
    Kepiński L, Wołcyrz M, Okal J (1995) J Chem Soc, Faraday Trans 91:507–515CrossRefGoogle Scholar
  4. 4.
    Le Normand F, Barrault J, Breault R, Hilaire L, Kiennemann A (1991) J Phys Chem 95:257–269CrossRefGoogle Scholar
  5. 5.
    Kepinski L, Okal J (2000) J Catal 192:48–53CrossRefGoogle Scholar
  6. 6.
    De Rivas B, Lopez-Fonseca R, Gutierrez-Ortiz MA, Gutierrez-Ortiz JI (2011) Appl Catal B Environ 104:373–381CrossRefGoogle Scholar
  7. 7.
    Farra R, Wrabetz S, Schuster ME, Stotz E, Hamilton NG, Amrute AP, Pérez-Ramírez J, López N, Teschner D (2013) Phys Chem Chem Phys 15:3454–3465CrossRefGoogle Scholar
  8. 8.
    He J, Xu T, Wang Z, Zhang Q, Deng W, Wang Y (2012) Angew Chem 51:2438–2442CrossRefGoogle Scholar
  9. 9.
    Hu Z, Metiu H (2012) J Phys Chem C 116:6664–6671CrossRefGoogle Scholar
  10. 10.
    Perez-Ramirez J, Mondelli C, Schmidt T, Schlüter OF-K, Wolf A, Mleczko L, Dreier T (2011) Energy Environ Sci 4:4786–4799CrossRefGoogle Scholar
  11. 11.
    Amrute AP, Mondelli C, Moser M, Novell-Leruth G, López N, Rosenthal D, Farra R, Schuster ME, Teschner D, Schmidt T, Pérez-Ramírez J (2012) J Catal 286:287–297CrossRefGoogle Scholar
  12. 12.
    Moser M, Mondelli C, Schmidt T, Girgsdies F, Schuster ME, Farra R, Szentmiklósi L, Teschner D, Pérez-Ramírez J (2013) Appl Catal B Environ 132:123–131CrossRefGoogle Scholar
  13. 13.
    Farra R, Eichelbaum M, Schlögl R, Szentmiklósi L, Schmidt T, Amrute AP, Mondelli C, Pérez-Ramírez J, Teschner D (2013) J Catal 297:119–127CrossRefGoogle Scholar
  14. 14.
    Weckhuysen BM (2003) Phys Chem Chem Phys 5:4351–4360CrossRefGoogle Scholar
  15. 15.
    Hölsä J, Niinistö L (1980) Thermochim Acta 37:155–160CrossRefGoogle Scholar
  16. 16.
    Song K, Kauzlarich SM (1994) Chem Mater 6:386–394CrossRefGoogle Scholar
  17. 17.
    Hölsä J, Lahtinen M, Lastusaari M, Valkonen J, Viljanen J (2002) J Solid State Chem 165:48–55CrossRefGoogle Scholar
  18. 18.
    Zhu GC, Li FP, Xiao MG (2003) Trans Nonferrous Met Soc Chin 13:1454–1458Google Scholar
  19. 19.
    Depner SW, Kort KR, Jaye C, Fischer DA, Banerjee S (2009) J Phys Chem C 113:14126–14134CrossRefGoogle Scholar
  20. 20.
    Lee J, Zhang Q, Saito F (2001) J Solid State Chem 160:469–473CrossRefGoogle Scholar
  21. 21.
    WoŁcyrz M, Kepinski L (1992) J Solid State Chem 99:409–413CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Ramzi Farra
    • 1
  • Frank Girgsdies
    • 1
  • Wiebke Frandsen
    • 1
  • Maike Hashagen
    • 1
  • Robert Schlögl
    • 1
  • Detre Teschner
    • 1
  1. 1.Fritz-Haber-Institut der Max-Planck-GesellschaftBerlinGermany

Personalised recommendations