Catalysis Letters

, Volume 143, Issue 9, pp 919–925 | Cite as

Effect of Nano-sized TiO2 Additional Support in WO3/SiO2 Catalyst Systems on Metathesis of Ethylene and Trans-2-Butene to Propylene

  • Wimonrat Limsangkass
  • Suphot Phatanasri
  • Piyasan Praserthdam
  • Joongjai Panpranot
  • Wuttithep Jareewatchara
  • Sirachaya Kunjara Na Ayudhya
  • Kongkiat Suriye


TiO2 was employed as an additional support by physical mixing with the WO3/SiO2 catalysts and used in the metathesis of ethylene and trans-2-butene for propylene production. Having nano-sized TiO2 as the additional support could enhance trans-2-butene conversion and propylene yield. The results suggested that tungsten could migrate from an original support and form more well-dispersed surface tetrahedral tungsten oxide species on the additional support, leading to a better dispersion. It was also shown that TiO2 having nano size could provide better spreading of the tungsten species than the micro size. A smaller crystallite size evidenced from XRD and a higher ratio between surface tetrahedral tungsten oxide species over crystalline WO3 evidenced from FT-Raman spectra of the nano-sized TiO2 systems were, among other things, advantageous to metathesis activity improvement of the catalyst. This study offers a guidance of supplementing the existing catalysts as one simple way of improvement in the catalytic performances which can easily be applied in the real metathesis reaction process.

Graphical Abstract


Metathesis Additional support TiO2 Nano Micro 



The authors would like to thank the financial supports from Chulalongkorn University, the Thailand Research Fund (TRF), the Office of Higher Education Commission, and the NRU-CU (AM-1088D). The special thanks also go to the Ratchadaphiseksomphot Endowment Fund of Chulalongkorn University (RES560530021-CC). The Royal Golden Jubilee Ph.D. scholarship from TRF and SCG Chemicals for W.L. are also gratefully acknowledged.


  1. 1.
    Corma A, Melo FV, Sauvanaud L, Ortega F (2005) Catal Today 107–108:699CrossRefGoogle Scholar
  2. 2.
    Cosyns J, Chodorge J, Commereuc D, Torck B (1998) Hydrocarb Process 77:61Google Scholar
  3. 3.
    Huang S, Liu S, Xin W, Bai J, Xie S, Wang Q, Xu L (2005) J Mol Catal A 226:61CrossRefGoogle Scholar
  4. 4.
    Mol JC (1999) Catal Today 51:289CrossRefGoogle Scholar
  5. 5.
    Wu G, Bartlett B, Tysoe WT (1998) J Catal 173:172CrossRefGoogle Scholar
  6. 6.
    Liu S, Huang S, Xin W, Bai J, Xie S, Xu L (2004) Catal Today 93:471CrossRefGoogle Scholar
  7. 7.
    Spamer A, Dube TI, Moodley DJ, van Schalkwyk C, Botha JM (2003) Appl Catal A 255:133CrossRefGoogle Scholar
  8. 8.
    Lokhat D, Starzak M, Stelmachowski M (2008) Appl Catal A 351:137CrossRefGoogle Scholar
  9. 9.
    Zhao Q, Chen SL, Gao J, Xu C (2009) Trans Met Chem 34:621CrossRefGoogle Scholar
  10. 10.
    Chaemchuen S, Limsangkass W, Netiworaraksa B, Phatanasri S, Sae-Ma N, Suriye K (2012) Bulg Chem Commun 44:87Google Scholar
  11. 11.
    Sibeijn M, Mol JC (1990) Appl Catal 67:279CrossRefGoogle Scholar
  12. 12.
    Lopez DE, Goodwin JG Jr, Bruce DA (2007) J Catal 245:381CrossRefGoogle Scholar
  13. 13.
    Phongsawat W, Netiworaruksa B, Suriye K, Praserthdam P, Panpranot J (2012) Catal Lett 142:1141CrossRefGoogle Scholar
  14. 14.
    Huang S, Liu S, Zhu Q, Zhu X, Xin W, Liu H, Feng Z, Li C, Xie S, Wang Q, Xu L (2007) Appl Catal A 323:94CrossRefGoogle Scholar
  15. 15.
    Ross-Medgaarden EI, Wachs IE (2007) J Phys Chem C 111:15089CrossRefGoogle Scholar
  16. 16.
    Chaemchuen S, Phatanasri S, Verpoort F, Sae-ma N, Suriye K (2012) Kinet Catal 53:247CrossRefGoogle Scholar
  17. 17.
    Van Roosmalen AJ, Mol JC (1982) J Catal 78:17CrossRefGoogle Scholar
  18. 18.
    Spamer A, Dube TI, Moodley DJ, van Schalkwyk C, Botha JM (2003) Appl Catal A 255:153CrossRefGoogle Scholar
  19. 19.
    Xie Y, Yang N, Liu Y, Tang Y (1983) Sci Sinica 26:337Google Scholar
  20. 20.
    Jentoft FC, Schmelz H, Knozinger H (1997) Appl Catal A 161:167CrossRefGoogle Scholar
  21. 21.
    Debecker DP, Stoyanova M, Rodemerck U, Eloy P, Leonard A, Su BL, Gaigneaux EM (2010) J Phys Chem C 114:18664CrossRefGoogle Scholar
  22. 22.
    Kaucky D, Wichterlova B, Dedecek J, Sobalik Z, Jakubec I (2011) Appl Catal A 397:82CrossRefGoogle Scholar
  23. 23.
    Benhnajady MA, Modirshahla N, Shokri M, Rad B (2008) Global NEST 10:1Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Wimonrat Limsangkass
    • 1
  • Suphot Phatanasri
    • 1
  • Piyasan Praserthdam
    • 1
  • Joongjai Panpranot
    • 1
  • Wuttithep Jareewatchara
    • 2
  • Sirachaya Kunjara Na Ayudhya
    • 2
  • Kongkiat Suriye
    • 2
  1. 1.Center of Excellence on Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of EngineeringChulalongkorn UniversityBangkokThailand
  2. 2.SCG Chemicals, Co., Ltd.BangkokThailand

Personalised recommendations