Catalysis Letters

, Volume 143, Issue 12, pp 1277–1284 | Cite as

PdAu Alloy Nanoparticles Encapsulated by PPI-g-MWCNTs as a Novel Catalyst for Chemoselective Hydrogenation of Alkenes Under Mild Conditions

  • Ahmad Shaabani
  • Mojtaba Mahyari


The synthesis, characterization and catalytic applications of bimetallic PdAu encapsulated on polypropylene imine grafted multi-wall carbon nanotubes hybrid materials have been reported. The results show that the catalyst induces a highly activity and chemoselective hydrogenation of less hindered alkenes to the corresponding alkanes using hydrogen gas in environmentally friendly solvents H2O/EtOH at 50 °C with high yields. The characterization of catalyst was confirmed by FT-IR, transmission electron microscopy, X-ray photoelectron spectroscopy, and X-ray powder diffraction.

Graphical Abstract


Bimetallic Polypropylene imine Multi-wall carbon nanotubes Chemoselective hydrogenation 



We gratefully acknowledge financial support from the Catalysis Center of Excellence (CCE) at Shahid Beheshti University.

Supplementary material

10562_2013_1063_MOESM1_ESM.docx (793 kb)
Supplementary material 1 (DOCX 792 kb)


  1. 1.
    Al-Herz M, Simmons MJ, Wood J (2011) Ind Eng Chem Res 51:8815–8825CrossRefGoogle Scholar
  2. 2.
    Edwards JK, Carley AF, Herzing AA, Kiely CJ, Hutchings GJ (2008) Faraday Discuss 138:225–239CrossRefGoogle Scholar
  3. 3.
    Blaser HU, Steiner M, Studer H (2009) ChemCatChem 1:210–221CrossRefGoogle Scholar
  4. 4.
    Durand J, Teuma E, Gómez M (2008) Eur J Inorg Chem 2008:3577–3586CrossRefGoogle Scholar
  5. 5.
    Kwon MS, Kim N, Park CM, Lee JS, Kang KY, Park J (2005) Org Lett 7:1077–1079CrossRefGoogle Scholar
  6. 6.
    Wang D, Li Y (2011) Adv Mater 23:1044–1060CrossRefGoogle Scholar
  7. 7.
    Jiang H-L, Xu Q (2011) J Mater Chem 21:13705–13725CrossRefGoogle Scholar
  8. 8.
    Ji X, Lee KT, Holden R, Zhang L, Zhang J, Botton GA, Couillard M, Nazar LF (2010) Nat Chem 2:286–293CrossRefGoogle Scholar
  9. 9.
    Jiang H-L, Akita T, Ishida T, Haruta M, Xu Q (2011) J Am Chem Soc 133:1304–1306CrossRefGoogle Scholar
  10. 10.
    Studt F, Abild-Pedersen F, Bligaard T, Sørensen RZ, Christensen CH, Nørskov JK (2008) Science 320:1320–1322CrossRefGoogle Scholar
  11. 11.
    Tee Y-H, Grulke E, Bhattacharyya D (2005) Ind Eng Chem Res 44:7062–7070CrossRefGoogle Scholar
  12. 12.
    Yoon B, Wai CM (2005) J Am Chem Soc 127:17174–17175CrossRefGoogle Scholar
  13. 13.
    Buhleier E, Wehner W, Vögtle F (1978) Synthesis 2:155–158CrossRefGoogle Scholar
  14. 14.
    Bosman AW, Janssen HM, Meijer EW (1999) Chem Rev 99:1665–1688CrossRefGoogle Scholar
  15. 15.
    Zhao M, Sun L, Crooks RM (1998) J Am Chem Soc 120:4877–4878CrossRefGoogle Scholar
  16. 16.
    Zhao M, Crooks RM (1999) Angew Chem Int Ed Engl 38:364–366CrossRefGoogle Scholar
  17. 17.
    Crooks RM, Zhao M (1999) Adv Mater 11:217–220CrossRefGoogle Scholar
  18. 18.
    Zhao M, Crooks RM (1999) Chem Mater 11:3379–3385CrossRefGoogle Scholar
  19. 19.
    Yeung LK, Crooks RM (2001) Nano Lett 1:14–17CrossRefGoogle Scholar
  20. 20.
    Chechik V, Zhao M, Crooks RM (1999) J Am Chem Soc 121:4910–4911CrossRefGoogle Scholar
  21. 21.
    Chechik V, Crooks RM (2000) J Am Chem Soc 122:1243–1244CrossRefGoogle Scholar
  22. 22.
    Shaabani A, Rahmati A, Badri Z (2008) Catal Commun 9:13–16CrossRefGoogle Scholar
  23. 23.
    Shaabani A, Maleki A (2007) Appl Catal A 331:149–151CrossRefGoogle Scholar
  24. 24.
    Shaabani A, Farhangi E, Rahmati A (2008) Appl Catal A 338:14–19CrossRefGoogle Scholar
  25. 25.
    Shaabani A, Farhangi E (2009) Appl Catal A 371:148–152CrossRefGoogle Scholar
  26. 26.
    Yeoh W-M, Lee K-Y, Chai S-P, Lee K-T, Mohamed AR (2009) New Carbon Mater 24:119–123CrossRefGoogle Scholar
  27. 27.
    Gromov A, Dittmer S, Svensson J, Nerushev OA, Perez-García SA, Licea-Jiménez L, Rychwalski R, Campbell EE (2005) J Mater Chem 15:3334–3339CrossRefGoogle Scholar
  28. 28.
    Kapoor MP, Kasama Y, Yokoyama T, Yanagi M, Inagaki S, Nanbu H, Juneja LR (2006) J Mater Chem 16:4714–4722CrossRefGoogle Scholar
  29. 29.
    Moors R, Vögtle F (1993) Chem Ber 126:2133–2135CrossRefGoogle Scholar
  30. 30.
    Gröhn F, Bauer BJ, Akpalu YA, Jackson CL, Amis EJ (2000) Macromolecules 33:6042–6050CrossRefGoogle Scholar
  31. 31.
    Zhao M, Tokuhisa H, Crooks RM (1997) Angew Chem Int Ed Engl 36:2596–2598CrossRefGoogle Scholar
  32. 32.
    Zhao M, Liu Y, Crooks RM, Bergbreiter DE (1999) J Am Chem Soc 121:923–930CrossRefGoogle Scholar
  33. 33.
    Kim H-S, Lee H, Han K-S, Kim J-H, Song M-S, Park M-S, Lee J-Y, Kang J-K (2005) J Phys Chem B 109:8983–8986CrossRefGoogle Scholar
  34. 34.
    Scott RW, Wilson OM, Oh S-K, Kenik EA, Crooks RM (2004) J Am Chem Soc 126:15583–15591CrossRefGoogle Scholar
  35. 35.
    Guo G, Qin F, Yang D, Wang C, Xu H, Yang S (2008) Chem Mater 20:2291–2297CrossRefGoogle Scholar
  36. 36.
    Han Y-F, Zhong Z, Ramesh K, Chen F, Chen L, White T, Tay Q, Yaakub SN, Wang ZJ (2007) Phys Chem C 111:8410–8413CrossRefGoogle Scholar
  37. 37.
    Oh S-K, Kim Y-G, Ye H, Crooks RM (2003) Langmuir 19:10420–10425CrossRefGoogle Scholar
  38. 38.
    Kim Y-G, Oh S-K, Crooks RM (2004) Chem Mater 16:167–172CrossRefGoogle Scholar
  39. 39.
    Kim JH, Bryan WW, Chung H-W, Park CY, Jacobson AJ, Lee TR (2009) ACS Appl Mater Interfaces 1:1063–1069CrossRefGoogle Scholar
  40. 40.
    Scott RWJ, Datye AK, Crooks RM (2003) J Am Chem Soc 125:3708–3709CrossRefGoogle Scholar
  41. 41.
    Chung Y-M, Rhee H-K (2003) Catal Lett 85:159–164CrossRefGoogle Scholar
  42. 42.
    Chung Y-M, Rhee H-K (2003) J Mol Catal A Chem 206:291–298CrossRefGoogle Scholar
  43. 43.
    Pan H-B, Yen CH, Yoon B, Wai CM (2006) Synth Commun 36:3473–3478CrossRefGoogle Scholar
  44. 44.
    Yoon B, Sheaff CN, Eastwood D, Wai CM (2007) J Nanophoton 1:013508CrossRefGoogle Scholar
  45. 45.
    Eastwood D, Femandez C, Yoon B, Sheaff CN, Wai CM (2006) Appl Spectrosc 60:958–963CrossRefGoogle Scholar
  46. 46.
    Krishnan GR, Sreekumar K (2008) Eur J Org Chem 2008:4763–4768CrossRefGoogle Scholar
  47. 47.
    Jiang Y, Jiang J, Gao Q, Ruan M, Yu H, Qi L (2008) Nanotechnology 19:075714CrossRefGoogle Scholar
  48. 48.
    Hagiwara H, Sasaki H, Tsubokawa N, Hoshi T, Suzuki T, Tsuda T, Kuwabata S (2010) Synlett 2010:1990–1996CrossRefGoogle Scholar
  49. 49.
    Hwang SH, Moorefield CN, Wang P, Jeong KU, Cheng SZD, Kotta KK, Newkome GR (2006) J Am Chem Soc 128:7505–7509CrossRefGoogle Scholar
  50. 50.
    Stobinski L, Zommer L, Dus R (1999) Appl Surf Sci 141:319–325CrossRefGoogle Scholar
  51. 51.
    Bus E, Miller JT, Bokhoven JA (2005) J Phys Chem B 109:14581–14587CrossRefGoogle Scholar
  52. 52.
    Bus E, Prins R, Bokhoven JA (2007) Phys Chem Chem Phys 9:3312–3320CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of ChemistryShahid Beheshti University, G. C.TehranIran

Personalised recommendations