Advertisement

Catalysis Letters

, Volume 143, Issue 11, pp 1175–1181 | Cite as

Hydroconversion of Triglycerides to Hydrocarbons Over Mo–Ni/γ-Al2O3 Catalyst Under Low Hydrogen Pressure

  • Toshiyuki Kimura
  • Hiroyuki Imai
  • Xiaohong Li
  • Koji Sakashita
  • Sachio Asaoka
  • Sulaiman S. Al-Khattaf
Article

Abstract

The hydroconversion of coconut oil to saturated hydrocarbons under low hydrogen pressure was demonstrated, using a sulfur-free Mo–Ni/γ-Al2O3 catalyst prepared by the co-impregnation of Ni and Mo species. The Mo–Ni/γ-Al2O3 catalyst exhibited remarkably high conversion of coconut oil as well as high selectivity for the generation of the hydrocarbon fraction associated with jet fuel. Examining variations in product distributions with contact time showed that hydrocarbons were produced primarily through the hydrogenolysis of triglycerides followed by hydrodecarboxylation of fatty acids. Increases in the contact time led to improvements in the proportion of hydrocarbons via the hydrodeoxygenation of fatty acids.

Graphical Abstract

Keywords

Coconut oil Hydrodecarboxylation Hydrodeoxygenation Mo–Ni catalyst Low hydrogen pressure 

Notes

Acknowledgments

We gratefully acknowledge the financial supports of CREST-JST (Japan Science and Technology Agency) and JCCP (Japan Cooperation Center, Petroleum) as well as the assistance of our colleagues, S. Yamamoto and S. Sudo.

References

  1. 1.
    Huber GW, Iborra S, Corma A (2006) Chem Rev 106:4044CrossRefGoogle Scholar
  2. 2.
    Demirbaş A (2003) Energy Convers Manag 44:2093CrossRefGoogle Scholar
  3. 3.
    Asadullah M, Miyazawa T, Ito S, Kunimori K, Tomishige K (2003) Appl Catal A 246:103CrossRefGoogle Scholar
  4. 4.
    Li H, Shen B, Kabalu CJ, Nchare M (2009) Renew Energy 34:1033CrossRefGoogle Scholar
  5. 5.
    Junming X, Jianchun J, Yunjuan S, Jie C (2010) Bioresour Technol 101:9803CrossRefGoogle Scholar
  6. 6.
    Tani H, Hasegawa T, Shimouchi M, Asami K, Fujimoto K (2011) Catal Today 164:410CrossRefGoogle Scholar
  7. 7.
    Pyl PS, Schietekat MC, Reyniers FM, Abhari R, Marin BG, Geem VMK (2011) Chem Eng J 176:178CrossRefGoogle Scholar
  8. 8.
    Gusmão J, Brodzki D, Djega-Mariadassou G, Frety R (1989) Catal Today 5:533CrossRefGoogle Scholar
  9. 9.
    da Rocha Filho GN, Brodzki D, Djega-Mariadassou G (1993) Fuel 72:543CrossRefGoogle Scholar
  10. 10.
    Stumborg M, Wong A, Hogan E (1996) Bioresour Technol 56:13CrossRefGoogle Scholar
  11. 11.
    Donnis B, Egeberg RG, Blom P, Kundsen KG (2009) Top Catal 52:229CrossRefGoogle Scholar
  12. 12.
    Šimáček P, Kubička D, Šebor G, Pospíšil M (2009) Fuel 88:456CrossRefGoogle Scholar
  13. 13.
    Bezergianni S, Voutetakis S, Kalogianni A (2009) Ind Eng Chem Res 48:8402CrossRefGoogle Scholar
  14. 14.
    Šimáček P, Kubička D, Šebor G, Pospíšil M (2010) Fuel 89:611CrossRefGoogle Scholar
  15. 15.
    Guzman A, Torres JE, Prada LP, Nuñez ML (2010) Catal Today 156:38CrossRefGoogle Scholar
  16. 16.
    Kubička D, Kaluža L (2010) Appl Catal A 372:199CrossRefGoogle Scholar
  17. 17.
    Priecel P, Kubička D, Čapek L, Bastl Z, Ryšánek P (2011) Appl Catal A 397:127CrossRefGoogle Scholar
  18. 18.
    Sousa LA, Zotin JL, da Teixeira Silva V (2012) Appl Catal A 449:105CrossRefGoogle Scholar
  19. 19.
    Smejkal Q, Smejkalová L, Kubička D (2009) Chem Eng J 146:155Google Scholar
  20. 20.
    Kubička D, Šimáček P, Žilková N (2009) Top Catal 52:161CrossRefGoogle Scholar
  21. 21.
    Sankaranarayanan TM, Banu M, Pandurangan A, Sivasanker S (2011) Bioresour Technol 102:10717CrossRefGoogle Scholar
  22. 22.
    Holmgren J, Gosling C, Couch K, Kalnes T, Marker T, McCall M, Marinangeli R (2007) Petrol Technol Quart 3:119Google Scholar
  23. 23.
    Holmgren J, Gosling C, Marinangeli R, Marker T, Faraci G, Perego C (2007) Hydrocarbon Process 9:67Google Scholar
  24. 24.
    Morgan T, Santillan-Jimenez E, Harman-Ware AE, Ji Y, Grubb D, Crocker M (2012) Chem Eng J 189–190:346CrossRefGoogle Scholar
  25. 25.
    Kubička D, Horáček J (2011) Appl Catal A 394:9CrossRefGoogle Scholar
  26. 26.
    Corma A (1997) Chem Rev 97:2373CrossRefGoogle Scholar
  27. 27.
    Čejka J, Žilková N, Kaluža L, Zdražil M (2002) Stud Surf Sci Catal 141:243CrossRefGoogle Scholar
  28. 28.
    Kaluža L, Zdražil M, Žilková N, Čejka J (2002) Catal Commun 3:151CrossRefGoogle Scholar
  29. 29.
    Kimura T, Gao J, Sakashita K, Li X, Asaoka S (2012) J Jpn Petrol Inst 55:40CrossRefGoogle Scholar
  30. 30.
    Kimura T, Sakashita K, Li X, Asaoka S (2012) J Jpn Petrol Inst 55:99CrossRefGoogle Scholar
  31. 31.
    Satyarthi JK, Chiranjeevi T, Gokak DT, Viswanathan PS (2013) Catal Sci Technol 3:70CrossRefGoogle Scholar
  32. 32.
    Morgan T, Grubb D, Santillan-Jimenez E, Crocker M (2010) Top Catal 53:820CrossRefGoogle Scholar
  33. 33.
    Murzin DY, Maki-Arvela P (2010). In: Crocker M (ed) Thermochemical conversion of biomass to liquid fuels and chemicals. RSC, Cambridge, p 496Google Scholar
  34. 34.
    Kubicková I, Snåre M, Eränen K, Maki-Arvela P, Murzin DY (2005) Catal Today 106:197CrossRefGoogle Scholar
  35. 35.
    Snåre M, Kubicková I, Maki-Arvela P, Eränen K, Wärnå J, Murzin DY (2007) Chem Eng J 134:29CrossRefGoogle Scholar
  36. 36.
    Maki-Arvela P, Kubicková I, Snåre M, Eränen K, Murzin DY (2007) Energy Fuels 21:30CrossRefGoogle Scholar
  37. 37.
    Simakova I, Simakova O, Maki-Arvela P, Simakov A, Estrada M, Murzin DY (2009) Appl Catal A 355:100CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Toshiyuki Kimura
    • 1
  • Hiroyuki Imai
    • 1
  • Xiaohong Li
    • 1
  • Koji Sakashita
    • 1
  • Sachio Asaoka
    • 1
    • 2
  • Sulaiman S. Al-Khattaf
    • 2
  1. 1.Faculty of Environmental EngineeringThe University of KitakyushuKitakyushuJapan
  2. 2.Center of Research Excellence in Petroleum Refining and PetrochemicalsKing Fahd University of Petroleum & MineralsDhahranSaudi Arabia

Personalised recommendations