Catalysis Letters

, Volume 143, Issue 11, pp 1166–1174 | Cite as

Structural and Catalytic Characterization of Radiation-Induced Ni/TiO2 Nanoparticles

  • S. Chettibi
  • N. Keghouche
  • Y. Benguedouar
  • M. M. Bettahar
  • J. Belloni


The radiolysis route is applied to synthesize nickel catalysts deposited on titanium dioxide. The TPR profile of radiation-induced Ni/TiO2 catalyst indicates a more complete reduction of the irradiated catalysts compared to the conventionally H2-reduced one. When tested in the benzene hydrogenation, the radiolytic Ni/TiO2 exhibits catalytic properties with higher efficiency than the H2-reduced catalyst. This observation is assigned to the presence of intermetallic Ni–Ti compounds (Ni2.66Ti1.33 and Ni3Ti) evidenced by XRD. In contrast, the calcined and H2-reduced catalyst contains predominantly the oxidized Ni5TiO7 phase, where the nickel is in strong interaction with the support. The TEM observations show highly dispersed nickel.

Graphical Abstract

When tested in the benzene hydrogenation reaction, the catalyst Ni/TiO2 prepared by gamma-irradiation exhibits catalytic properties (the turn-over frequency at total conversion is 33.5 molecules Bz Ni at −1 s−1 at 140 °C) with higher efficiency and at lower temperature than the H2-reduced catalyst. This observation is assigned to extremely dispersed nickel nanoparticles and to intermetallic Ni2.66Ti1.33 and Ni3Ti compounds evidenced by XRD.


Nanoparticles Interfacial phases Nickel Titania Radiolytic process Hydrogenation 



This study has benefited of the aid of the Algerian “Fond National de la Recherche” (Project CNEPRU N° D00920100029) and National Project of Research PNR. It has been partially supported by French-Algerian cooperation (Contract “Tassili” CMEP 04 MDU 616). The authors are grateful to Patricia Beaunier, Paris 6 University for HRTEM imaging.


  1. 1.
    Belloni J, Mostafavi M, (2003) In: Hatano Y, Mozumder A (eds) Charged particle and photon interaction with matter, p 579Google Scholar
  2. 2.
    Belloni J (2006) Catal Today 113:141CrossRefGoogle Scholar
  3. 3.
    Delcourt MO, Keghouche N, Belloni J (1983) Nouv J Chim 471:131Google Scholar
  4. 4.
    Bzdon S, Goralski J, Maniukiewicz W, Perkowski J, Rogowski J, Szadkowska-Nicze M (2012) Radiat Phys Chem 81:322CrossRefGoogle Scholar
  5. 5.
    Keghouche N, Chettibi S, Latrèche F, Bettahar MM, Belloni J, Marignier JL (2005) Radiat Phys Chem 74:185CrossRefGoogle Scholar
  6. 6.
    Chettibi S, Benguedouar Y, Keghouche N (2009) Phys Procedia 2:707CrossRefGoogle Scholar
  7. 7.
    Chettibi S, Wojcieszak R, Boudjennad EH, Belloni J, Bettahar MM, Keghouche N (2006) Catal Today 113:157CrossRefGoogle Scholar
  8. 8.
    Boudjennad E, Chafi Z, Ouafek N, Ouhenia S, Keghouche N, Minot C (2012) Surf Sci 15:1208CrossRefGoogle Scholar
  9. 9.
    Benguedouar Y, Keghouche N, Belloni J (2012) Mat Sci Eng B 177:27CrossRefGoogle Scholar
  10. 10.
    Linsebigler LA, Guangquan L, Yates JT (1995) J Chem Rev 95:735CrossRefGoogle Scholar
  11. 11.
    Raupp GB, Dumesic JA (1985) J Phys Chem 89:5240CrossRefGoogle Scholar
  12. 12.
    Henrich VE, Cox PA (1994) The surface science of metal oxides Eds. Cambridge University press, CambridgeGoogle Scholar
  13. 13.
    Diebold U (2003) Surf Sci Reports 48:53CrossRefGoogle Scholar
  14. 14.
    Menetrey M, Markovits A, Minot C (2003) Surf Sci 524:49CrossRefGoogle Scholar
  15. 15.
    Bond GC (2005) Metal catalyzed reactions of hydrocarbons. Fundamental and applied catalysis, vol 5. Springer, p 209Google Scholar
  16. 16.
    Tauster SJ, Fung SC, Garten RI (1978) J Am Chem Soc 100:170CrossRefGoogle Scholar
  17. 17.
    Loye HCZ, Faltens TA, Stacy AM (1986) J Am Chem Soc 108:8104CrossRefGoogle Scholar
  18. 18.
    Loye HCZ, Stacy A, Staley RH (1988) Solid State Ion 26:133CrossRefGoogle Scholar
  19. 19.
    Sankar G, Rao CNR, Raymeni T (1991) J Mater Chem 1:299CrossRefGoogle Scholar
  20. 20.
    Wu T, Yan Q, Wan H (2005) J Mol Cat A 226:41CrossRefGoogle Scholar
  21. 21.
    Zhang ZL, Tsipouriari VA, Efstathiou AM, Verykios XE (1996) J Catal 158:51CrossRefGoogle Scholar
  22. 22.
    Narayana S, Sreekanth G (1989) J Chem Faraday Trans 185:3785CrossRefGoogle Scholar
  23. 23.
    Dandekar A, Vannice A (1999) J Catal 183:344CrossRefGoogle Scholar
  24. 24.
    Bradford MCJ, Vannice MA (1996) Appl Cat A 142:73CrossRefGoogle Scholar
  25. 25.
    JCPDS Files ICDD (1997) PCPDFWin International Centre for Diffraction DataGoogle Scholar
  26. 26.
    Reich MA, Maciejewski M, Baiker A (2000) Catal Today 56:347CrossRefGoogle Scholar
  27. 27.
    Takanabe K, Nagaoka K, Nariai K, Aika KI (2005) J Catal 232:268CrossRefGoogle Scholar
  28. 28.
    Yan QG, Weng WZ, Wan HL, Toghiani H, Toghiani RK, Pittman CU (2003) Appl Catal A 239:43CrossRefGoogle Scholar
  29. 29.
    Diskin AM, Cunningham RH, Ormerod RM (1998) Catal Today 46:147CrossRefGoogle Scholar
  30. 30.
    Saadi A, Merabti R, Rassoul Z, Bettahar MM (2006) J Mol Catal A 253:79CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • S. Chettibi
    • 1
  • N. Keghouche
    • 1
  • Y. Benguedouar
    • 1
  • M. M. Bettahar
    • 2
  • J. Belloni
    • 3
  1. 1.Laboratoire Microstructure et Défauts dans les MatériauxUniversité Constantine 1ConstantineAlgeria
  2. 2.UMR CNRS 7565 Catalyse Hétérogène/Structure Organique et Réactivité, Faculté des SciencesUniversité Henri PoincaréNancyFrance
  3. 3.Laboratoire de Chimie Physique, ELYSE, UMR CNRS/UPS 8000Université Paris SudOrsayFrance

Personalised recommendations