Catalysis Letters

, Volume 143, Issue 8, pp 756–762 | Cite as

Reactivity and Selectivity in the Au/Pd(111) Alloy-Catalyzed Vinyl Acetate Synthesis

  • Florencia Calaza
  • Zhenjun Li
  • Michael Garvey
  • Matthew Neurock
  • Wilfred T. Tysoe


The rates of reaction of acetate species adsorbed on a range of Au/Pd(111) alloys with gas-phase ethylene to form vinyl acetate monomer (VAM) were explored by monitoring the time dependence of the adsorbate coverages using infrared spectroscopy. It was found that the acetate species react directly to form VAM since the decrease in the coverage of acetate species correlates directly with the rate of VAM formation. The VAM was retained on the surface, in accord with the stronger binding of VAM on Au/Pd(111) alloys than on the metal as found in previous surface science studies. In addition, the formation of ethylidyne species from ethylene, previously found on Pd(111), was suppressed on alloys for gold coverages ≥0.37 monolayers. A substantial increase in the rate of VAM formation was found with increasing gold coverage in the alloy. In addition to the strengthening of the binding of VAM on the alloy, the binding of the reactants decreased with increasing gold content in the alloy, leading to an overall increase in the exothermicity of the reaction. This is expected to lead to a decrease in reaction activation energies, rationalizing the observed increase in reactions rate. However, it has also been found previously that the reactant coverages influence the elementary step activation energies on Pd(111). Increasing the gold coverage in the alloy also decreases the coverages of the reactants and may therefore also influence the VAM formation activity.

Graphical Abstract


Infrared absorption spectroscopy Palladium gold alloy Vinyl acetate monomer Vinyl acetate synthesis 



We gratefully acknowledge the support of this work by the National Science Foundation, under Grant number CHE-1109377.


  1. 1.
    Colling PM, Johnson LR, Nicolau I (1996) Palladium-gold catalyst for vinyl acetate production. In: U.S.P. Office (ed), Hoechst Celanese Corporation, United StatesGoogle Scholar
  2. 2.
    Horning L, Wunder F, Quadflieg T (1967) Process for preparing vinyl acetates. In: F.H.A.V.M.L. Bruning (ed), United StatesGoogle Scholar
  3. 3.
    Chen M, Kumar D, Yi C-W, Goodman DW (2005) Science 310:291–293CrossRefGoogle Scholar
  4. 4.
    Han YF, Kumar D, Goodman DW (2005) J Catal 230:353–358CrossRefGoogle Scholar
  5. 5.
    Stacchiola D, Calaza F, Burkholder L, Tysoe WT (2004) J Am Chem Soc 126:15384–15385CrossRefGoogle Scholar
  6. 6.
    Stacchiola D, Calaza F, Burkholder L, Schwabacher AW, Neurock M, Tysoe WT (2005) Angew Chem Int Edit 44:4572–4574Google Scholar
  7. 7.
    Samanos B, Boutry P, Montarnal R (1971) J Catal 23:19–30CrossRefGoogle Scholar
  8. 8.
    Calaza F, Stacchiola D, Neurock M, Tysoe WT (2010) J Am Chem Soc 132:2202–2207CrossRefGoogle Scholar
  9. 9.
    Calaza F, Stacchiola D, Neurock M, Tysoe WT (2010) Catal Lett 138:135–142CrossRefGoogle Scholar
  10. 10.
    Calaza F, Stacchiola D, Neurock M, Tysoe WT (2005) Surf Sci 598:263–275CrossRefGoogle Scholar
  11. 11.
    Sinfelt JH (1983) Bimetallic catalysts: discoveries, concepts, and applications. Wiley, New YorkGoogle Scholar
  12. 12.
    Dowden DA, Reynolds PW (1950) Discuss Faraday Soc 8:184–190CrossRefGoogle Scholar
  13. 13.
    Schwab G-M (1950) Discuss Faraday Soc 8:166–171CrossRefGoogle Scholar
  14. 14.
    Sinfelt JH, Carter JL, Yates DJC (1972) J Catal 24:283–296CrossRefGoogle Scholar
  15. 15.
    Woodruff DP (2002) Surface alloys and alloy surfaces. Elsevier, AmsterdamGoogle Scholar
  16. 16.
    Rodriguez J (1996) Surf Sci Rep 24:223–287CrossRefGoogle Scholar
  17. 17.
    Gao F, Goodman DW (2012) Chem Soc Rev 41:8009–8020CrossRefGoogle Scholar
  18. 18.
    Li Z, Furlong O, Calaza F, Burkholder L, Poon HC, Saldin D, Tysoe WT (2008) Surf Sci 602:1084–1091CrossRefGoogle Scholar
  19. 19.
    Li Z, Gao F, Wang Y, Calaza F, Burkholder L, Tysoe WT (2007) Surf Sci 601:1898–1908CrossRefGoogle Scholar
  20. 20.
    Boscoboinik JA, Plaisance C, Neurock M, Tysoe WT (2008) Phys Rev B 77Google Scholar
  21. 21.
    Calaza F, Gao F, Li Z, Tysoe WT (2007) Surf Sci 601:714–722CrossRefGoogle Scholar
  22. 22.
    Yuan D, Gong X, Wu R (2008) J Phys Chem C 112:1539–1543CrossRefGoogle Scholar
  23. 23.
    Yuan D, Gong X, Wu R (2007) Phys Rev B 75:233401CrossRefGoogle Scholar
  24. 24.
    Calaza F, Li Z, Gao F, Boscoboinik J, Tysoe WT (2008) Surf Sci 602:3523–3530CrossRefGoogle Scholar
  25. 25.
    Bowker M, Morgan C, Couves J (2004) Surf Sci 555:145–156CrossRefGoogle Scholar
  26. 26.
    Bowker M, Morgan C, Zhdanov VP (2007) Phys Chem Chem Phys 9Google Scholar
  27. 27.
    Calaza F, Tysoe WT, Stacchiola DJ (2011) Adsorpt Sci Technol 29:603–611CrossRefGoogle Scholar
  28. 28.
    Li Z, Gao F, Tysoe WT (2008) Surf Sci 602:416–423CrossRefGoogle Scholar
  29. 29.
    Li Z, Calaza F, Gao F, Tysoe WT (2007) Surf Sci 601:1351–1357CrossRefGoogle Scholar
  30. 30.
    Boscoboinik JA, Calaza FC, Garvey MT, Tysoe WT (2010) J Phys Chem C 114:1875–1880CrossRefGoogle Scholar
  31. 31.
    Baddeley CJ, Tikhov M, Hardacre C, Lomas JR, Lambert RM (1996) J Phys Chem 100:2189–2194CrossRefGoogle Scholar
  32. 32.
    Ormerod RM, Baddeley CJ, Lambert RM (1991) Surf Sci 259:L709–L713CrossRefGoogle Scholar
  33. 33.
    James J, Saldin DK, Zheng T, Tysoe WT, Sholl DS (2005) Catal Today 105:74–77CrossRefGoogle Scholar
  34. 34.
    Koestner RJ, Van Hove MA, Somorjai GA (1983) J Phys Chem 87:203–213CrossRefGoogle Scholar
  35. 35.
    Kesmodel LL, Dubois LH, Somorjai GA (1978) Chem Phys Lett 56:267–271CrossRefGoogle Scholar
  36. 36.
    Cremer PS, Su X, Shen YR, Somorjai GA (1996) J Am Chem Soc 118:2942–2949CrossRefGoogle Scholar
  37. 37.
    Zaera F, Somorjai GA (1984) J Am Chem Soc 106:2288–2293CrossRefGoogle Scholar
  38. 38.
    Stacchiola D, Tysoe WT (2009) J Phys Chem C 113:8000–8001CrossRefGoogle Scholar
  39. 39.
    Moskaleva LV, Chen Z-X, Aleksandrov HA, Mohammed AB, Sun Q, Rösch N (2009) J Phys Chem C 113:2512–2520CrossRefGoogle Scholar
  40. 40.
    Conrad H, Ertl G, Latta EE (1974) Surf Sci 41:435–446CrossRefGoogle Scholar
  41. 41.
    Bligaard T, Nørskov JK, Dahl S, Matthiesen J, Christensen CH, Sehested J (2004) J Catal 224:206–217CrossRefGoogle Scholar
  42. 42.
    Loffreda D, Delbecq F, Vigné F, Sautet P (2009) Angew Chem Int Ed 48:8978–8980CrossRefGoogle Scholar
  43. 43.
    Logadottir A, Rod TH, Nørskov JK, Hammer B, Dahl S, Jacobsen CJH (2001) J Catal 197:229–231CrossRefGoogle Scholar
  44. 44.
    van Santen RA, Neurock M (2006) Molecular heterogeneous catalysis: a conceptual and computational approach. Wiley-VCH, WeinheimGoogle Scholar
  45. 45.
    van Santen RA, Neurock M, Shetty SG (2009) Chem Rev 110:2005–2048Google Scholar
  46. 46.
    Rivalta I, Mazzone G, Russo N, Sicilia E (2009) J Chem Theory Comput 5:1350–1360CrossRefGoogle Scholar
  47. 47.
    García-Mota MN, López NR (2008) J Am Chem Soc 130:14406–14407CrossRefGoogle Scholar
  48. 48.
    G. Mazzone, I. Rivalta, N. Russo, E. Sicilia, Chem Commun, 0 (2009) 1852-1854Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Florencia Calaza
    • 1
  • Zhenjun Li
    • 1
  • Michael Garvey
    • 1
  • Matthew Neurock
    • 2
  • Wilfred T. Tysoe
    • 1
  1. 1.Laboratory for Surface Studies, Department of Chemistry and BiochemistryUniversity of Wisconsin-MilwaukeeMilwaukeeUSA
  2. 2.Department of Chemical Engineering and ChemistryUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations