Advertisement

Catalysis Letters

, Volume 143, Issue 8, pp 763–771 | Cite as

Nitrobenzene Hydrogenation on Au/TiO2 and Au/SiO2 Catalyst: Synthesis, Characterization and Catalytic Activity

  • Cecilia Torres
  • Cristian Campos
  • José Luis García Fierro
  • Marcelo Oportus
  • Patricio Reyes
Article

Abstract

Recently, gold has been proposed as an active phase for the hydrogenation of nitro-arenes. This metal has been rarely used in hydrogenation reactions because gold does not possess hydrogen chemisorption capacity. However, small gold particles behave differently and they may be able to chemisorb hydrogen to same extent, leading to possible activity in hydrogenation reactions. This may provide an advantage because the reactions catalyzed by highly dispersed gold particles may be better controlled. In this work, TiO2 and SiO2 supported Au catalysts were prepared by the deposition–precipitation method using urea and NaOH to precipitate the metallic component at different temperatures and hydrogen pressures. The metal loading for all the catalysts was 1 wt%. The catalysts were characterized by X-ray diffraction, high resolution transmission electron microscopy among others. The catalysts were then evaluated in the hydrogenation of nitrobenzene in a batch type reactor at 25 °C. All the catalysts were active in the hydrogenation reaction and the major obtained product was aniline.

Graphical Abstract

Keywords

Gold Nitrobenzene Hydrogenation Heterogeneous 

Notes

Acknowledgments

The authors thank the Project FONDECYT 1100259 for funding this research. C. Torres and C. Campos are grateful to CONICYT for their doctoral Fellowship. We also thanks to REDOC.CTA Universidad de Concepción.

References

  1. 1.
    Mao J, Yan X, Gu H, Jiang L (2009) Chin J Catal 30:182CrossRefGoogle Scholar
  2. 2.
    Fan G-Y, Fu Zhang Lei, Yuan Hai-Yan, Lin Mao, Li R-XC, Li Hua, Jun Xian (2010) Catal Commun 11:451CrossRefGoogle Scholar
  3. 3.
    Höller V, Wegricht D, Yuranov I, Kiwi-Minsker L, Renken A (2000) Chem Eng Technol 23:251CrossRefGoogle Scholar
  4. 4.
    Zhao F, Fujita S-i, Sun J, Ikushima Y, Arai M (2004) Catal Today 98:523CrossRefGoogle Scholar
  5. 5.
    Han X, Zhou R, Lai G, Zheng X (2004) Catal Today 93–95:433CrossRefGoogle Scholar
  6. 6.
    Tijani A, Coq B, Figueras F (1991) Appl Catal 76:255CrossRefGoogle Scholar
  7. 7.
    Coq B, Tijani A, Dutartre R, Figueras F (1993) J Mol Catal A Chem 79:253CrossRefGoogle Scholar
  8. 8.
    Wang F, Liu J, Xu X (2008) Chem Commun 44:2040CrossRefGoogle Scholar
  9. 9.
    Li H, Zhao Q, Li H (2008) J Mol Catal A Chem 285:29CrossRefGoogle Scholar
  10. 10.
    Torres GC, Jablonski EL, Baronetti GT, Castro AA, de Miguel SR, Scelza OA, Blanco MD, Pena Jimenez MA, Fierro JLG (1997) Appl Catal A 161:213CrossRefGoogle Scholar
  11. 11.
    Tafesh AM, Weiguny J (1996) Chem Rev 96:2035CrossRefGoogle Scholar
  12. 12.
    Escaffre P, Thorez A, Kalck P (1985) J Mol Catal A Chem 33:87CrossRefGoogle Scholar
  13. 13.
    Figueras F, Coq B (2001) J Mol Catal A Chem 173:117CrossRefGoogle Scholar
  14. 14.
    Augustine R (1996) Heterogeneous Catalysis for the Synthetic Chemist. Marcel Dekker, New YorkGoogle Scholar
  15. 15.
    Auer E, Berweiler M, Gross M, Pietsch J (2000). In: Ford ME (ed) Catalysis by Organic Reactions, vol 82. Marcel Dekker, New York, p 293Google Scholar
  16. 16.
    Nishimura Handbook (2001) of Heterogeneous Catalytic Hydrogenation for Organic Synthesis. Wiley, New YorkGoogle Scholar
  17. 17.
    Dubois V, James G, Dallons JL, Geysel AV (1994). In: Ford M (ed) Catalysis of Organic Reactions, Marcel Dekker, New York, p 82Google Scholar
  18. 18.
    Raims RK, Lambers EA, Genetti RA (1996). In: Maltz RE (ed) Catalysis of Organic Reactions, vol 68. Marcel Dekker, New York, p 43Google Scholar
  19. 19.
    Dale DJ, Dunn PJ, Golightly C, Hughes ML, Levett PC, Pearce AK, Searle PM, Ward G, Wood AS (1999) Org Process Res Dev 4:17CrossRefGoogle Scholar
  20. 20.
    Bond GC (2006) C. Catalysis By Gold, Imperial College Press, Louis and D.T. ThompsonGoogle Scholar
  21. 21.
    Zhang J, Wang Y, Ji H, Wei Y, Wu N, Zuo B, Wang Q (2005) J Catal 229:114CrossRefGoogle Scholar
  22. 22.
    Wang X, Liang M, Liu H, Wang Y (2007) J Mol Catal A Chem 273:160CrossRefGoogle Scholar
  23. 23.
    Corma A, Boronat M, González S, Illas F (2007) Chem Commun 32:3371CrossRefGoogle Scholar
  24. 24.
    Blaser HU (2006) Science 313:312–313CrossRefGoogle Scholar
  25. 25.
    Gomez S, Torres C, Fierro JLG, Apesteguia CR, Reyes P (2012) J Chil Chem Soc 57:1194CrossRefGoogle Scholar
  26. 26.
    Sangeetha P, Shanthi K, Rao KSR, Viswanathan B, Selvam P (2009) Appl Catal A 353:160CrossRefGoogle Scholar
  27. 27.
    Relvas J, Andrade R, Freire FG, Lemos F, Araújo P, Pinho MJ, Nunes CP, Ribeiro FR (2008) Catal Today 133–135:828CrossRefGoogle Scholar
  28. 28.
    Nieto-Márquez A, Valverde JL, Keane MA (2009) Appl Catal A 352:159CrossRefGoogle Scholar
  29. 29.
    Sangeetha P, Seetharamulu P, Shanthi K, Narayanan S, Rama Rao KS (2007) J Mol Catal A Chem 273:244CrossRefGoogle Scholar
  30. 30.
    Corma A, Serna P, P. C, Calvino JJ (2008) J Am Chem Soc 130:8748CrossRefGoogle Scholar
  31. 31.
    Corma A, Serna P (2006) Science 313:332CrossRefGoogle Scholar
  32. 32.
    Zhou J, Ralston J, Sedev R, Beattie DA, Col J (2009) Int Sci 331:251–262Google Scholar
  33. 33.
    Serna PM (2008) Tesis Doctoral Universidad Politécnica de Valencia. Departamento de Química, Instituto de Tecnología Química (UPV-CSIC)Google Scholar
  34. 34.
    Visentin F, Puxty G, Kut OM, Hungerbühler K (2006) Ind Eng Chem Res 45:4544CrossRefGoogle Scholar
  35. 35.
    Sikhwivhilu LM, Coville NJ, Pulimaddi BM, Venkatreddy J, Vishwanathan V (2007) Catal Commun 8:1999CrossRefGoogle Scholar
  36. 36.
    Campos CH, Reyes P, Oportus M, Torres C (2009) C. Urbina and J.L.G. Fierro, XXVIII Jornadas Chilenas de QuímicaGoogle Scholar
  37. 37.
    Zanella R, Giorgio S, Henry CR, Louis C (2002) J Phys Chem B 106:7634CrossRefGoogle Scholar
  38. 38.
    Eustis S, El-Sayed MA (2006) Chem Soc Rev 35:209CrossRefGoogle Scholar
  39. 39.
    Bohren CF, Huffman DR (1983) Absorption and scattering of light by small particles. John Wiley, New YorkGoogle Scholar
  40. 40.
    Kerker M (1969) The scattering of light and other electromagnetic radiation. Academic Press, New YorkGoogle Scholar
  41. 41.
    Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ (1996) Nature 382:607–609CrossRefGoogle Scholar
  42. 42.
    Tanaka HKM, McIntire M, Castillo-Garza R (2005) Microporous Mesoporous Mater 85:374CrossRefGoogle Scholar
  43. 43.
    Taleb A, Petit C, Pileni MP (1997) Chem Mater 9:950CrossRefGoogle Scholar
  44. 44.
    Henglein A (1993) J Phys Chem 97:5457CrossRefGoogle Scholar
  45. 45.
    Somodi F, Borbáth I, Hegedű M, Tompos A, Sajó IE, Szegedi Á, Rojas S, Fierro JLG, Margitfalvi JL (2008) Appl Catal A General 347:216CrossRefGoogle Scholar
  46. 46.
    Somodi F, Borbáth I, Hegedűs M, Lázár K, Sajó IE, Geszti O, Rojas S, Fierro JLG, Margitfalvi JL (2009) Appl Surf Sci 256:726CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Grupo de Catálisis por Metales, Facultad de Ciencias QuímicasUniversidad de ConcepciónConcepciónChile
  2. 2.Grupo de Energía y Química Sostenible (EQS)Instituto de Catálisis y Petroleoquímica (ICP-CSIC)MadridSpain

Personalised recommendations