Catalysis Letters

, Volume 143, Issue 8, pp 798–806 | Cite as

Enhanced Performance of Zn–Sn/HZSM-5 Catalyst for the Conversion of Methanol to Aromatics

  • Yubing Xin
  • Puyu Qi
  • Xinping Duan
  • Haiqiang Lin
  • Youzhu Yuan


The conversion of methanol to aromatics such as benzene, toluene, and xylenes (BTX) was performed over HZSM-5-supported bimetallic Zn–Sn catalysts. The results indicated that Sn species preferentially healed the defects in HZ crystals to create new active sites. The catalyst with Zn species markedly enhanced the aromatization performance but easily produced heavy coke. Thus, an optimized catalyst with 1 wt% Zn and 1 wt% Sn exhibited improved catalytic performance in terms of selectivity and BTX yield compared with a catalyst with a single metal. Consequently, the BTX yield was 64.1 % under the reaction conditions of 0.1 MPa and 0.8 h−1 methanol weight hourly space velocity at 450 °C.

Graphical Abstract

The HZSM-5 supported bimetallic catalyst 1 % Zn–1 % Sn/HZ exhibits a higher BTX yield than 2 % Sn/HZ and a longer lifetime than 2 % Zn/HZ. The deactivated catalyst can be regenerated for several times without significant reduction in catalytic performance.


HZSM-5  Zn  Sn  Methanol to aromatics  Coke 



We gratefully acknowledge the financial support from the Natural Science Foundation of China (20923004) and the Program for Changjiang Scholars and Innovative Research Team in University (IRT1036).

Supplementary material

10562_2013_1031_MOESM1_ESM.doc (2.1 mb)
Supplementary material 1 (DOC 2,167 kb)


  1. 1.
    Kerr RA (2005) Science 309:101CrossRefGoogle Scholar
  2. 2.
    Lunsford JH (2000) Catal Today 63:165CrossRefGoogle Scholar
  3. 3.
    Wang L, Tao L, Xie M, Xu G, Huang J, Xu Y (1993) Catal Lett 21:35CrossRefGoogle Scholar
  4. 4.
    Solymosi F, Szöke A, Cserenyi J (1996) Catal Lett 39:157CrossRefGoogle Scholar
  5. 5.
    Bouchy C, Schmidt I, Anderson J, Jacobsen C, Derouane E, Derouane-Abd Hamid S (2000) J Mol Catal A 163:283CrossRefGoogle Scholar
  6. 6.
    Cook B, Mousko D, Hoelderich W, Zennaro R (2009) Appl Catal A 365:34CrossRefGoogle Scholar
  7. 7.
    Luzgin MV, Rogov VA, Arzumanov SS, Toktarev AV, Stepanov AG, Parmon VN (2009) Catal Today 144:265CrossRefGoogle Scholar
  8. 8.
    Reddy JK, Motokura K, Koyama TR, Miyaji A, Baba T (2012) J Catal 289:53CrossRefGoogle Scholar
  9. 9.
    Ji YJ, Zhang B, Xu L, Wu H, Peng H, Chen L, Liu Y, Wu P (2011) J Catal 283:168CrossRefGoogle Scholar
  10. 10.
    Toch K, Thybaut JW, Vandegehuchte BD, Narasimhan CSL, Domokos L, Marin GB (2012) Appl Catal A 425–426:130Google Scholar
  11. 11.
    Odedairo T, Balasamy RJ, Al-Khattaf S (2011) J Mol Catal A 345:21CrossRefGoogle Scholar
  12. 12.
    Kim YH, Lee KH, Lee JS (2011) Catal Today 178:72CrossRefGoogle Scholar
  13. 13.
    Li J, Wei Y, Chen J, Tian P, Su X, Xu S, Qi Y, Wang Q, Zhou Y, He Y, Liu Z (2012) J Am Chem Soc 134:836CrossRefGoogle Scholar
  14. 14.
    Tajima N, Tsuneda T, Toyama F, Hirao K (1998) J Am Chem Soc 120:8222CrossRefGoogle Scholar
  15. 15.
    Bjørgen M, Joensen F, Lillerud K-P, Olsbye U, Svelle S (2009) Catal Today 142:90CrossRefGoogle Scholar
  16. 16.
    Ni Y, Sun A, Wu X, Hai G, Hu J, Li T, Li G (2011) J Nat Gas Chem 20:237CrossRefGoogle Scholar
  17. 17.
    Lopez-Sanchez JA, Conte M, Landon P, Zhou W, Bartley JK, Taylor SH, Carley AF, Kiely CJ, Khalid K, Hutchings GJ (2012) Catal Lett 142:1049CrossRefGoogle Scholar
  18. 18.
    Inoue Y, Nakashiro K, Ono Y (1995) Micropor Mater 4:379CrossRefGoogle Scholar
  19. 19.
    Tian T, Qian W, Sun Y, Cui Y, Lu Y, Wei F (2009) Mod Chem Ind 1:016Google Scholar
  20. 20.
    Ni Y, Sun A, Wu X, Hai G, Hu J, Li T, Li G (2011) Micropor Mesopor Mater 143:435CrossRefGoogle Scholar
  21. 21.
    Barthos R, Bánsági T, Süli Zakar T, Solymosi F (2007) J Catal 247:368CrossRefGoogle Scholar
  22. 22.
    Kecskemeti A, Barthos R, Solymosi F (2008) J Catal 258:111CrossRefGoogle Scholar
  23. 23.
    Zaidi HA, Pant KK (2004) Catal Today 96:155CrossRefGoogle Scholar
  24. 24.
    Zaidi HA, Pant KK (2008) Ind Eng Chem Res 47:2970CrossRefGoogle Scholar
  25. 25.
    Ni Y, Sun A, Wu X, Hu J, Li T, Li G (2011) Chin J Chem Eng 19:439CrossRefGoogle Scholar
  26. 26.
    Choudhary VR, Mondal KC, Mulla SAR (2005) Angew Chem Int Ed 117:4455CrossRefGoogle Scholar
  27. 27.
    Schulz H (2010) Catal Today 154:183CrossRefGoogle Scholar
  28. 28.
    Aguayo AT, Gayubo AG, Ortega J, Olazar M, Bilbao J (1997) Catal Today 37:239CrossRefGoogle Scholar
  29. 29.
    Barbera K, Sørensen S, Bordiga S, Skibsted J, Fordsmand H, Beato P, Janssens TVW (2012) Catal Sci Technol 2:1196CrossRefGoogle Scholar
  30. 30.
    Hill JM, Cortright R, Dumesic J (1998) Appl Catal A 168:9CrossRefGoogle Scholar
  31. 31.
    Zhang Y, Zhou Y, Qiu A, Wang Y, Xu Y, Wu P (2006) Catal Cummun 7:860CrossRefGoogle Scholar
  32. 32.
    Bleken F, Skistad W, Barbera K, Kustova M, Bordiga S, Beato P, Lillerud KP, Svelle S, Olsbye U (2011) Phys Chem Chem Phys 13:2539CrossRefGoogle Scholar
  33. 33.
    Yu L, Huang S, Zhang S, Liu Z, Xin W, Xie S, Xu L (2012) ACS Catal 2:1203CrossRefGoogle Scholar
  34. 34.
    Chaudhari K, Das T, Rajmohanan P, Lazar K, Sivasanker S, Chandwadkar A (1999) J Catal 183:281CrossRefGoogle Scholar
  35. 35.
    Barbera K, Bonino F, Bordiga S, Janssens TVW, Beato P (2011) J Catal 280:196CrossRefGoogle Scholar
  36. 36.
    Katada N, Igi H, Kim JH, Niwa M (1997) J Phys Chem B 101:5969CrossRefGoogle Scholar
  37. 37.
    Mal N, Ramaswamy V, Rajamohanan P, Ramaswamy A (1997) Micropor Mater 12:331CrossRefGoogle Scholar
  38. 38.
    Lubango LM, Scurrell MS (2002) Appl Catal A 235:265CrossRefGoogle Scholar
  39. 39.
    Kazansky V (2003) J Catal 216:192CrossRefGoogle Scholar
  40. 40.
    Fernandez C, Stan I, Gilson J-P, Thomas K, Vicente A, Bonilla A, Pérez-Ramírez J (2010) Chem Eur J 16:6224CrossRefGoogle Scholar
  41. 41.
    Holm MS, Svelle S, Joensen F, Beato P, Christensen CH, Bordiga S, Bjørgen M (2009) Appl Catal A 356:23CrossRefGoogle Scholar
  42. 42.
    Thibault-Starzyk F, Stan I, Abelló S, Bonilla A, Thomas K, Fernandez C, Gilson JP, Pérez-Ramírez J (2009) J Catal 264:11CrossRefGoogle Scholar
  43. 43.
    Tamási A, Kiricsi I, Kónya Z, Halász J, Guczi L (1999) J Mol Struct 482:1CrossRefGoogle Scholar
  44. 44.
    Almutairi SMT, Mezari B, Magusin PCMM, Pidko EA, Hensen EJM (2012) ACS Catal 2:71CrossRefGoogle Scholar
  45. 45.
    Biscardi JA, Meitzner GD, Iglesia E (1998) J Catal 179:192CrossRefGoogle Scholar
  46. 46.
    Song Y, Feng Y, Liu F, Kang C, Zhou X, Xu L, Yu G (2009) J Mol Catal A 310:130CrossRefGoogle Scholar
  47. 47.
    Sun C, Yang Y, Du J, Qin F, Liu Z, Shen W, Xu H, Tang Y (2012) Chem Commun 48:5787CrossRefGoogle Scholar
  48. 48.
    Groen JC, Moulijn JA, Pérez-Ramírez J (2006) J Mater Chem 16:2121CrossRefGoogle Scholar
  49. 49.
    Triantafillidis CS, Vlessidis AG, Nalbandian L, Evmiridis NP (2001) Micropor Mesopor Mater 47:369CrossRefGoogle Scholar
  50. 50.
    Lucas DA, Canizares P, Duran A, Carrero A (1997) Appl Catal A 156:299CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Yubing Xin
    • 1
  • Puyu Qi
    • 1
  • Xinping Duan
    • 1
  • Haiqiang Lin
    • 1
  • Youzhu Yuan
    • 1
  1. 1.State Key Laboratory for Physical Chemistry of Solid Surfaces, National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-EstersCollege of Chemistry and Chemical Engineering, Xiamen UniversityXiamenChina

Personalised recommendations