Advertisement

Catalysis Letters

, Volume 143, Issue 8, pp 844–852 | Cite as

Preparation and Photoactivity of Nanocrystalline TiO2 Powders Obtained by Thermohydrolysis of TiOSO4

  • A. Di Paola
  • M. Bellardita
  • L. Palmisano
  • R. Amadelli
  • L. Samiolo
Article

Abstract

Nanocrystalline TiO2 photocatalysts were synthesized in mild conditions by thermohydrolysis of TiOSO4 in water at 100 °C and post-calcination treatment at various temperatures. The TiO2 powders were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, specific surface area determinations, scanning electron microscopy and electron paramagnetic resonance measurements. The photoactivity of the samples was tested employing the photodegradation of 4-nitrophenol in liquid–solid regimen and the photooxidation of gaseous 2-propanol. The best results were obtained with the powder calcined at 600 °C for 10 h. Surprisingly, the not calcined sample was the most active for the abatement of NOx under irradiation.

Graphical Abstract

Time course of 4-nitrophenol degradation: (filled circle) as-prepared TiO2; (filled square) calcined at 600°C for 3 h; (filled triangle) Degussa P25; (filled diamond) calcined at 600°C for 10 h.

Keywords

Titanium dioxide TiOSO4 Thermohydrolysis Heterogeneous photocatalysis 

Notes

Acknowledgments

The authors thank Dr. Anna Maria Venezia of ISMN-CNR (Palermo) for the XPS measurements.

References

  1. 1.
    Schiavello M (ed) (1988) Photocatalysis and environment, trends and applications. Kluwer Academic, DordrechtGoogle Scholar
  2. 2.
    Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Chem Rev 95:69CrossRefGoogle Scholar
  3. 3.
    Fujishima A, Rao T, Tryk DA (2000) J Photochem Photobiol C 1:1CrossRefGoogle Scholar
  4. 4.
    Palmisano G, Yurdakal S, Augugliaro V, Loddo V, Palmisano L (2007) Adv Synth Catal 349:964CrossRefGoogle Scholar
  5. 5.
    Addamo M, Augugliaro V, Bellardita M, Di Paola A, Loddo V, Palmisano G, Palmisano L, Yurdakal S (2008) Catal Lett 126:58CrossRefGoogle Scholar
  6. 6.
    Palmisano L, Augugliaro V, Bellardita M, Di Paola A, García López E, Loddo V, Marcí G, Palmisano G, Yurdakal S (2011) ChemSusChem 4:1431CrossRefGoogle Scholar
  7. 7.
    Hixson AW, Fredrickson REC (1945) Ind Eng Chem 31:678CrossRefGoogle Scholar
  8. 8.
    Santacesaria E, Tonello M, Storti G, Pace RC, Carrà S (1986) J Colloid Interface Sci 111:45CrossRefGoogle Scholar
  9. 9.
    Iwasaki M, Hara M, Ito S (1998) J Mater Sci Lett 17:1769CrossRefGoogle Scholar
  10. 10.
    Ito S, Inoue S, Kawada H, Hara M, Iwasaki M, Tada H (1999) J Colloid Interface Sci 216:59CrossRefGoogle Scholar
  11. 11.
    Sathyamoorthy S, Moggridge GD, Hounslow MJ (2001) Crys Growth Des 1:123CrossRefGoogle Scholar
  12. 12.
    Bavykin DV, Savinov EN, Smirniotis PG (2003) React Kinet Catal Lett 79:77CrossRefGoogle Scholar
  13. 13.
    Hidalgo MC, Sakthivel S, Bahnemann D (2004) Appl Catal A 277:183CrossRefGoogle Scholar
  14. 14.
    Krýsa J, Keppert M, Jirkovský J, Štengl V, Šubrt J (2004) J Mater Chem Phys 86:333CrossRefGoogle Scholar
  15. 15.
    Hidalgo MC, Bahnemann D (2005) Appl Catal B 61:259CrossRefGoogle Scholar
  16. 16.
    Sakthivel S, Hidalgo MC, Bahnemann DW, Geissen SU, Murugesan V, Vogelpohl A (2006) Appl Catal B 63:31CrossRefGoogle Scholar
  17. 17.
    Bavykin DV, Dubovitskaya VP, Vorontsov AV, Parmon VN (2007) Res Chem Intermediat 33:449CrossRefGoogle Scholar
  18. 18.
    Grzmil BU, Grela D, Kic B (2008) Chem Pap 62:18CrossRefGoogle Scholar
  19. 19.
    Dambournet D, Belharouak I, Amine K (2010) Chem Mater 22:1173CrossRefGoogle Scholar
  20. 20.
    Salim NT, Yamada M, Nakano H, Shima K, Isago H, Fukumoto M (2011) Surf Coat Technol 206:366CrossRefGoogle Scholar
  21. 21.
    Dai ZM, Chen AP, Yang Y, Gu HC, Gu MY (2001) China Powder Sci Technol 7:14Google Scholar
  22. 22.
    Inagaki M, Nakazawa Y, Hirano M, Kobayashi Y, Toyoda M (2001) Int J Inorg Mater 3:809CrossRefGoogle Scholar
  23. 23.
    Kolen’ko YV, Burukhin AA, Churagulov BR, Oleynikov NN (2003) Mater Lett 57:1124CrossRefGoogle Scholar
  24. 24.
    Toyoda M, Nanbu Y, Kito T, Himno M, Inagaki M (2003) Desalination 159:273CrossRefGoogle Scholar
  25. 25.
    Kolen’ko YV, Churagulov BR, Kunst M, Mazerolles L, Colbeau-Justin C (2004) Appl Catal B 54:51CrossRefGoogle Scholar
  26. 26.
    Chuan XY, Hirano M, Inagaki M (2004) Appl Catal B 51:255CrossRefGoogle Scholar
  27. 27.
    Hirano M, Ota K (2004) J Mater Sci 39:1841CrossRefGoogle Scholar
  28. 28.
    Toyoda M, Nanbu Y, Nakazawa Y, Hirano M, Inagaki M (2004) Appl Catal B 49:227CrossRefGoogle Scholar
  29. 29.
    Enríquez R, Pichat P (2006) J Environ Sci Health A 41:955CrossRefGoogle Scholar
  30. 30.
    Di Paola A, Cufalo G, Addamo M, Bellardita M, Campostrini R, Ischia M, Ceccato R, Palmisano L (2008) Colloid Surf A 317:366CrossRefGoogle Scholar
  31. 31.
    Di Paola A, Bellardita M, Ceccato R, Palmisano L, Parrino F (2009) J Phys Chem C 113:15166CrossRefGoogle Scholar
  32. 32.
    Amadelli R, Samiolo L (2007) In: Baglioni P, Cassar L (eds) Photocatalysis, environment and construction materials. RILEM Publications S.A.R.L, Bagneux, pp 155–162Google Scholar
  33. 33.
    Bellardita M, Addamo M, Di Paola A, Marcì G, Palmisano L, Cassar L, Borsa M (2010) J Hazard Mater 174:707CrossRefGoogle Scholar
  34. 34.
    Kumar KNP, Keizer K, Bruggraaf AJ, Okubo T, Nagamoto H, Morooka S (1992) Nature 358:48CrossRefGoogle Scholar
  35. 35.
    Ding XZ, Liu XH (1997) Mater Sci Eng A 224:210CrossRefGoogle Scholar
  36. 36.
    Zhang H, Banfield JF (2000) J Phys Chem B 104:3481CrossRefGoogle Scholar
  37. 37.
    Perego C, Revel R, Durupthy O, Cassaignon S, Jolivet JP (2010) Solid State Sci 12:989CrossRefGoogle Scholar
  38. 38.
    Ovenstone J, Yanagisawa K (1999) Chem Mater 11:2770CrossRefGoogle Scholar
  39. 39.
    Suzuki A, Tukuda R (1969) Bull Chem Soc Jpn 42:1853CrossRefGoogle Scholar
  40. 40.
    Zhang Q, Gao L, Guo J (2000) J Eur Ceram Soc 20:2153CrossRefGoogle Scholar
  41. 41.
    Amadelli R, Maldotti A, Bartocci C, Carassiti V (1989) J Phys Chem 93:6448CrossRefGoogle Scholar
  42. 42.
    Howard JA (1997) In: Alfassi Z (ed) Peroxyl Radicals. Wiley, Chichester, pp 283–334Google Scholar
  43. 43.
    Buettner GR (1987) Free Radic Biol Med 3:259CrossRefGoogle Scholar
  44. 44.
    Makino K, Hagiwara T, Murakami A (1991) Radiat Phys Chem 37:657Google Scholar
  45. 45.
    Nosaka Y, Komori S, Yawata K, Hirakawa T, Nosaka AY (2003) Phys Chem Chem Phys 5:4731CrossRefGoogle Scholar
  46. 46.
    Amadelli R, Molinari A, Vitali I, Samiolo L, Mura G, Maldotti A (2005) Catal Today 101:397CrossRefGoogle Scholar
  47. 47.
    Amadelli R, Samiolo L, Maldotti A, Molinari A, Gazzoli D (2011) Int J Photoenergy. doi: 10.1155/2011/259453 Article ID 259453Google Scholar
  48. 48.
    Hashimoto K, Wasada K, Toukai N, Kominami H, Kera Y (2000) J Photochem Photobiol, A 136:103CrossRefGoogle Scholar
  49. 49.
    Ohtani B, Ogawa Y, Nishimoto S (1997) J Phys Chem B 10:3746CrossRefGoogle Scholar
  50. 50.
    Jensen H, Joensen KD, Jørgensen JE, Pedersen JS, Søgaard EG (2004) J Nanoparticle Res 6:519CrossRefGoogle Scholar
  51. 51.
    Zhang Z, Wang CC, Zakaria R, Ying JY (1998) J Phys Chem B 102:10871CrossRefGoogle Scholar
  52. 52.
    Di Paola A, Augugliaro V, Palmisano L, Pantaleo G, Savinov E (2003) J Photochem Photobiol A 155:207CrossRefGoogle Scholar
  53. 53.
    Harvey PR, Rudham R, Ward S (1983) J Chem Soc Faraday Trans 1(79):1381Google Scholar
  54. 54.
    Ohko Y, Fujishima A, Hashimoto K (1998) J Phys Chem B 102:1724CrossRefGoogle Scholar
  55. 55.
    Xu W, Raftery D (2001) J Phys Chem B 105:4343CrossRefGoogle Scholar
  56. 56.
    Ohko Y, Hashimoto K, Fujishima A (1997) J Phys Chem A 101:8057CrossRefGoogle Scholar
  57. 57.
    Laufs S, Burgeth G, Duttlinger W, Kurtenbach R, Maban M, Thomas C, Wiesen P, Kleffmann J (2010) Atmospheric Environ 44:2341CrossRefGoogle Scholar
  58. 58.
    Yen CY, Lin YF, Hung CH, Tseng YH, Ma CCM, Chang MC, Shao H (2008) Nanotechnology 19:045604CrossRefGoogle Scholar
  59. 59.
    Brezová V, Gabčová S, Dvoranová D, Staško A (2005) J Photochem Photobiol B 79:121CrossRefGoogle Scholar
  60. 60.
    Hirakawa T, Nosaka Y (2002) Langmuir 18:3247CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Schiavello-Grillone Photocatalysis Group, Dipartimento di Energia, Ingegneria dell’informazione, e modelli Matematici (DEIM)Università di PalermoPalermoItaly
  2. 2.Consorzio Interuniversitario La Chimica per l’AmbienteMargheraItaly
  3. 3.ISOF-CNR (U.O.S. Ferrara) c/o Dipartimento di ChimicaUniversità di FerraraFerraraItaly

Personalised recommendations