Advertisement

Catalysis Letters

, Volume 143, Issue 6, pp 563–571 | Cite as

Knoevenagel Condensation Reactions Catalysed by Metal-Organic Frameworks

  • Andrew R. Burgoyne
  • Reinout Meijboom
Article

Abstract

Functionalised metal-organic frameworks (MOFs) which contain amino groups on their secondary building units (SBUs) are basic catalysts in the Knoevenagel condensation. University of Michigan Crystalline Material-1-amine (UMCM-1-NH2), Isoreticular MOF-3 (IRMOF-3) and a 5 % IRMOF-3 mixed in Isoreticular MOF-1 (MIXMOF) were evaluated as solid basic catalysts and demonstrated to be more active than aniline, their homogenous anologue. UMCM-1-NH2’s performance was higher than that of the other MOFs studied. IRMOF-3 and MIXMOF proved to have equal catalytic ability. Their catalytic performance was monitored at various temperatures and in different solvents for the reaction between benzaldehyde and ethyl acetoacetate or ethyl cyanoacetate.

Graphical Abstract

Keywords

Heterogeneous catalysis Catalysis activity Elementary kinetics C–C coupling Organic chemicals and reactions 

Notes

Acknowledgments

Funding from the South African NRF, Sasol R&D and the research fund from the University of Johannesburg are gratefully acknowledged. ARB is grateful to the NRF-DAAD for a scholarship. Mr. D. Harris and Dr. R. Meyer (Shimadzu South Africa) are acknowledged for use of their equipment.

Supplementary material

10562_2013_995_MOESM1_ESM.docx (85 kb)
Supplementary material 1 (DOCX 84 kb)

References

  1. 1.
    Derouane EG, Roberts SM (2007) Catalysts for fine chemical synthesis, microporous and mesoporous solid catalysts. Wiley, West SussexGoogle Scholar
  2. 2.
    Ernst S, Hartmann M, Sauerbeck S, Bongers T (2000) Appl Catal A 200:117–123CrossRefGoogle Scholar
  3. 3.
    Rao YVS, De Vos DE, Jacobs PA (1997) Angew Chem Int Ed 36:2661–2663CrossRefGoogle Scholar
  4. 4.
    Solomons TWG, Fryhle C (2009) Organic chemistry, 10th edn. Wiley, New YorkGoogle Scholar
  5. 5.
    Gascon J, Aktay U, Hernandez-Alonso MD, van Klink GPM, Kapteijn F (2009) J Catal 261:75–87CrossRefGoogle Scholar
  6. 6.
    Corma A, Fornes V, Martin-Aranda RM, Garcia H, Primo J (1990) J Appl Catal 59:237CrossRefGoogle Scholar
  7. 7.
    Kleist W, Maciejewski M, Baiker A (2010) Thermochim Acta 499:71–78CrossRefGoogle Scholar
  8. 8.
    Koh K, Wong-Foy AG, Matzger AJ (2008) Angew Chem Int Ed 47:677–680CrossRefGoogle Scholar
  9. 9.
    Freeman F (1980) Chem Rev 80:329–350CrossRefGoogle Scholar
  10. 10.
    Tietze LF (1996) Chem Rev 96:115–136CrossRefGoogle Scholar
  11. 11.
    Macquarrie DJ, Jackson DB, Clark JH (2001) In: Sherrington DC, Kybett AP (eds) Supported catalysts and their application. RSC, CambridgeGoogle Scholar
  12. 12.
    Corma A, Iborra S, Rodriguez I, Sanchez F (2002) J Catal 211:208–215Google Scholar
  13. 13.
    Climent MJ, Corma A, Dominguez I, Iborra S, Sabater MJ, Sastre G (2007) J Catal 246:136–146CrossRefGoogle Scholar
  14. 14.
    Nguyen LTL, Le KKA, Truong HX, Phan NTS (2012) Catal Sci Technol 2:521–528CrossRefGoogle Scholar
  15. 15.
    Brown WH, Foote CS, Iverson BL, Anslyn EV, Novak BM (2011) Organic chemistry, 6th edn. Brooks/Cole, BelmontGoogle Scholar
  16. 16.
    Sheldon RA, van Bekkum H (2008) Fine chemicals through heterogenous catalysis. Wiley, WeinheimGoogle Scholar
  17. 17.
    Hwang YK, Hong DY, Chang JS, Jhung SH, Seo YK, Kim J, Vimont A, Daturi M, Serre C, Ferey G (2008) Angew Chem Int Ed 47:4144–4148CrossRefGoogle Scholar
  18. 18.
    Opanasenko M, Dhakshinamoorthy A, Shamzhy M, Nachtigall P, Horáček M, Garcia H, Čejka J (2013) Catal Sci Technol 3:500–507CrossRefGoogle Scholar
  19. 19.
    Martín-Aranda RM, Čejka J (2010) Top Catal 53:141–153CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Research Centre for Synthesis and Catalysis, Department of ChemistryUniversity of JohannesburgJohannesburgSouth Africa

Personalised recommendations