Catalysis Letters

, Volume 143, Issue 5, pp 401–405 | Cite as

The Preparation of Group II Oxide Catalysts Through Acetate Calcination: The Influence of a Support on the Nature of the Final Catalyst

  • James A. Sullivan
  • Linda Sherry


The preparation of supported and unsupported group II oxide catalysts through oxidation of analogous group II acetates (Mg, Ca and Ba) in the presence and absence of a mesoporous silica material (SBA-15) was analysed using TGA. In the absence of the mesoporous support the acetates oxidised at different temperatures with a stability trend whereby Mg < Ca < Ba. The Mg and Ca salts were totally converted into the analogous oxides following treatment to 750 °C (albeit with different routes of conversion) while Ba(CH3CO2)2 was converted into BaCO3. Once dispersed onto SBA-15, all acetates combusted at similar temperatures irrespective of the counter-ion (indicating its nature was less important). The counter-ion also inverted the nature of the final material with, in this case, BaO and substantial amounts of CaO forming but MgCO3 being the product of Mg(CH3CO2)2 combustion.

Graphical Abstract


Group II oxides Carbonates SBA-15 Catalyst characterisation 



The UCD School of Chemistry and Chemical Biology is acknowledged and thanked for providing a studentship to LS. This contribution is dedicated to the memory of Prof. Joseph Cunningham, Department of Chemistry, UCC, Cork, Ireland.


  1. 1.
    Hargreaves JSJ, Hutchings GJ, Joyner RW, Kiely CJ (1991) Catal Today 10:259–265CrossRefGoogle Scholar
  2. 2.
    Lunsford JH (1995) Angew Chem Int Ed Engl 34(9):970–980CrossRefGoogle Scholar
  3. 3.
    Burch R, Breen JP, Meunier FC (2002) Appl Catal B 39(4):283–303CrossRefGoogle Scholar
  4. 4.
    Epling WS, Campbell LE, Yezerets A, Currier NW, Parks JE (2004) Catal Rev-Sci Eng 46(2):163–245CrossRefGoogle Scholar
  5. 5.
    Liu ZM, Woo SI (2006) Catal Rev-Sci Eng 48(1):43–89CrossRefGoogle Scholar
  6. 6.
    Royand S, Baiker A (2009) Chem Rev 109(9):4054–4091CrossRefGoogle Scholar
  7. 7.
    Cuningham J, Healy CP (1987) J Chem Soc Faraday Trans I 83(9):2973–2984CrossRefGoogle Scholar
  8. 8.
    Nunan J, Cronin JA, Cunningham J (1985) J Chem Soc Faraday Trans I 81:2027–2041CrossRefGoogle Scholar
  9. 9.
    Lopez Granados M, Zafra Poves MD, Martin Alonso DM, Mariscal R, Cabello Galisteo F, Moreno-Tost R, Santamaria J, Fierro JLG (2007) Appl Catal B 73(3–4):317–326Google Scholar
  10. 10.
    Verziu M, Cojocaru B, Hu JC, Richards R, Ciuculescu C, Filip P, Parvulescu VI (2008) Green Chem 10(4):373–381CrossRefGoogle Scholar
  11. 11.
    Bailly ML, Chizallet C, Costentin G, Krafft JM, Lauron-Pernot H, Che M (2005) J Catal 235(2):413–422CrossRefGoogle Scholar
  12. 12.
    Epling WS, Peden C, Charles HF, Szanyi J (2008) J Phys Chem C 112(29):10952–10959CrossRefGoogle Scholar
  13. 13.
    Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Science 279:548–552CrossRefGoogle Scholar
  14. 14.
    Piacentini M, Maciejewski M, Baiker A (2005) Appl Catal B 59:187–195CrossRefGoogle Scholar
  15. 15.
    Niu S, Han K, Lu C, Sun R (2010) Appl Energy 87:2237–2242CrossRefGoogle Scholar
  16. 16.
    Hwang U-Y, Park H-S, Koo K–K (2004) Ind Eng Chem Res 43:728–734CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.UCD School of Chemistry and Chemical BiologyBelfield, Dublin 4Ireland

Personalised recommendations