Advertisement

Catalysis Letters

, Volume 143, Issue 3, pp 289–297 | Cite as

Effects of Alkali Halide Salts on Hydrocarboxylation of Styrene Catalyzed by Water-Soluble Palladium Phosphine Complexes

  • Zhenhong He
  • Zhenshan Hou
  • Yanping Luo
  • Liang Zhou
  • Yuanfeng Liu
  • Wumanjiang Eli
Article

Abstract

Hydrocarboxylation of styrene catalyzed by water-soluble Pd-TPPTS complexes was investigated. The reaction conditions, including reaction pressure, temperature, time and etc. have a significant influence on the catalytic performance. It was found that the yield of total acids and the selectivity towards 3-phenylpropionic acid were enhanced by adding a suitable amount of alkali metal halide salts. In addition, the reaction mechanism and the role of alkali metal halide salts in the reaction were discussed on the basis of the characterization of 1H NMR and 31P NMR.

Graphical Abstract

Keywords

Aqueous two-phase system Hydrocarboxylation Palladium-phosphine complexes Alkali metal halide 

Notes

Acknowledgments

The authors are grateful for the support from the National Natural Science Foundation of China (U1179302) and One Hundred Person Project of the Chinese Academy of Sciences.

Supplementary material

10562_2013_961_MOESM1_ESM.doc (3.1 mb)
Supplementary material 1 (DOC 3157 kb)

References

  1. 1.
    Lapidus A, Eliseev O, Bondarenko T, Stepin N (2006) J Mol Catal A: Chem 252:245CrossRefGoogle Scholar
  2. 2.
    Williams DBG, Shaw ML, Hughes T (2011) Organometallics 30:4968CrossRefGoogle Scholar
  3. 3.
    Tortosa-Estorach C, Ruiz N, Masdeu-Bulto AM (2006) Chem Commun 26:2789CrossRefGoogle Scholar
  4. 4.
    del Río I, Claver C, van Leeuwen PWNM (2001) Eur J Inorg Chem 2001:2719Google Scholar
  5. 5.
    Seayad A, Kelkar AA, Chaudhari RV, Toniolo L (1998) Ind Eng Chem Res 37:2180CrossRefGoogle Scholar
  6. 6.
    Zhou LM, Guo CH, Fu HY, Jiang XH, Chen H, Li RX, Li XJ (2012) Spectrochimica Acta Part A 93:198CrossRefGoogle Scholar
  7. 7.
    Jayasree S, Seayad A, Chaudhari RV (2000) Chem Commun 2000:1239CrossRefGoogle Scholar
  8. 8.
    Tilloy S, Monflier E, Bertoux F, Castanet Y, Mortreux A (1997) New J Chem 21:529Google Scholar
  9. 9.
    Bertoux F, Tilloy S, Monflier E, Castanet Y, Mortreux A (1999) J Mol Catal A: Chem 138:53CrossRefGoogle Scholar
  10. 10.
    Bertoux F, Monflier E, Castanet Y, Mortreux A (1999) J Mol Catal A: Chem 143:11CrossRefGoogle Scholar
  11. 11.
    Karlsson M, Ionescu A, Andersson C (2006) J Mol Catal A: Chem 259:231CrossRefGoogle Scholar
  12. 12.
    Six N, Guerriero A, Landy D, Peruzzini M, Gonsalvi L, Hapiot F, Monflier E (2011) Catal Sci Technol 1:1347CrossRefGoogle Scholar
  13. 13.
    Franke R, Selent D, Börner A (2012) Chem Rev 112:58CrossRefGoogle Scholar
  14. 14.
    Aghmiz A, Giménez-Pedrós M, Masdeu-Bultó A, Schmidtchen FP (2005) Catal Lett 103:191CrossRefGoogle Scholar
  15. 15.
    Duvenhage DJ, Coville NJ (2005) Catal Lett 104:129CrossRefGoogle Scholar
  16. 16.
    Monflier E, Tilloy S, Bertoux F, Castanet Y, Mortreux A (1997) New J Chem 21:857Google Scholar
  17. 17.
    Tilloy S, Bertoux F, Mortreux A, Monflier E (1999) Catal Today 48:245CrossRefGoogle Scholar
  18. 18.
    Li Z, Peng Q, Yuan Y (2003) Appl Catal A Gen 239:79CrossRefGoogle Scholar
  19. 19.
    Bertoux F, Monflier E, Castanet Y, Mortreux A (1999) J Mol Catal A: Chem 143:23CrossRefGoogle Scholar
  20. 20.
    Mukhopadhyay K, Sarkar BR, Chaudhari RV (2002) J Am Chem Soc 124:9692CrossRefGoogle Scholar
  21. 21.
    Seayad A, Jayasree S, Damodaran K, Toniolo L, Chaudhari RV (2000) J Organomet Chem 601:100CrossRefGoogle Scholar
  22. 22.
    Seayad A, Kelkar AA, Toniolo L, Chaudhari RV (2000) J Mol Catal A: Chem 151:47CrossRefGoogle Scholar
  23. 23.
    Atla SB, Kelkar AA, Chaudhari RV (2009) J Mol Catal A: Chem 307:134CrossRefGoogle Scholar
  24. 24.
    Seayad A, Jayasree S, Chaudhari RV (1999) Org Lett 1:459CrossRefGoogle Scholar
  25. 25.
    Ding H, Hanson BE (1994) J Chem Soc, Chem Commun 13:2747CrossRefGoogle Scholar
  26. 26.
    Ionescu A, Ruppel M, Wendt OF (2006) J Organomet Chem 691:3806CrossRefGoogle Scholar
  27. 27.
    Papadogianakis G, Peters JA, Maat L, Sheldon RA (1995) J Chem Soc, Chem Commun 32:1105CrossRefGoogle Scholar
  28. 28.
    Papadogianakis G, Verspui G, Maat L, Sheldon RA (1997) Catal Lett 47:43CrossRefGoogle Scholar
  29. 29.
    Binkowski C, Cabou J, Bricout H, Hapiot F, Monflier E (2004) J Mol Catal A: Chem 215:23CrossRefGoogle Scholar
  30. 30.
    Ali BE, Fettouhi M (2002) J Mol Catal A: Chem 182–183:195CrossRefGoogle Scholar
  31. 31.
    Fontana G, Lubineau A, Scherrmann MC (2005) Org Biomol Chem 3:1375CrossRefGoogle Scholar
  32. 32.
    Benedek C, Törös S, Heil B (1999) J Organomet Chem 586:85CrossRefGoogle Scholar
  33. 33.
    Klingshirn MA, Rogers RD, Shaughnessy KH (2005) J Organomet Chem 690:3620CrossRefGoogle Scholar
  34. 34.
    Kuntz EG, Vittori OM (1998) J Mol Catal A: Chem 129:159CrossRefGoogle Scholar
  35. 35.
    del Río I, Ruiz N, Claver C, van der Veen LA, van Leeuwen PWNM (2000) J Mol Catal A Chem 161: 39Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Zhenhong He
    • 1
    • 2
  • Zhenshan Hou
    • 3
  • Yanping Luo
    • 1
    • 2
  • Liang Zhou
    • 1
    • 2
  • Yuanfeng Liu
    • 1
    • 2
  • Wumanjiang Eli
    • 1
  1. 1.Xinjiang Technical Institute of Physics and ChemistryThe Chinese Academy of SciencesUrumqiPeople’s Republic of China
  2. 2.Graduate University of the Chinese Academy of SciencesBeijingPeople’s Republic of China
  3. 3.Key Laboratory for Advanced Materials, Research Institute of Industrial CatalysisEast China University of Science and TechnologyShanghaiPeople’s Republic of China

Personalised recommendations