Catalysis Letters

, Volume 143, Issue 3, pp 282–288 | Cite as

Oxidative Dimerization of o-Aminophenol by Heterogeneous Mesoporous Material Modified with Biomimetic Salen-Type Copper(II) Complex

  • Tian-Kae Chin
  • Salasiah Endud
  • Shajarahtunnur Jamil
  • Srinivasa Budagumpi
  • Hendrik O. Lintang


Copper(II) N,N′-bis[4-(N,N-diethylamino)salicylidene]ethylenediamine (CAS) complex, which has the metal–ligand coordination “CuN2O2” that mimics the galactose enzyme active site, was synthesised and incorporated onto the organo-modified MCM-48. The supported CAS catalyst successfully catalysed the conversion of o-aminophenol to 2-amino-3H-phenoxazon-3-one in the presence of aqueous peroxide as oxidant. The catalytic performance of the CAS supported on organo-modified MCM-48 was found highly affected by the temperature, the type of aqueous peroxide and reaction solvent used.

Graphical Abstract

A salen-type copper complex of N2O2 donor ligand was synthesised and incorporated onto the modified MCM-48. The corresponding supported catalysts are active in the oxidation of o-aminophenol to 2-amino-3H-phenoxazin-3-one in the presence of peroxide as an oxidant.


Biomimetic catalyst Oxidative dimerization MCM-48 o-Aminophenol 2-Amino-3H-phenoxazin-3-one 



S. Endud thanks Universiti Teknologi Malaysia (UTM) for the Research University grant Q.J.130000.7113.02H23 and MOSTI for the National Nanotechnology Directorate Top-Down Grant R.J130000.7926.4H007. Authors thank the Ibnu Sina Institute for Fundamental Science Studies, UTM for research facilities. S. Budagumpi thanks UTM for a post-doctoral research fellowship.


  1. 1.
    Mukherjee M, Ray AR (2007) J Mol Catal A 266:207CrossRefGoogle Scholar
  2. 2.
    Dores Assis M, Mole AJB, Serra OA, Iamamoto Y (1995) J Mol Catal A 97:41CrossRefGoogle Scholar
  3. 3.
    Mansuy D (1993) Coord Chem Rev 125:129CrossRefGoogle Scholar
  4. 4.
    Meunier B (1992) Chem Rev 92:1411CrossRefGoogle Scholar
  5. 5.
    Gunter MJ, Turner T (1991) Coord Chem Rev 108:115CrossRefGoogle Scholar
  6. 6.
    Ricoux R, Raffy Q, Mahy JP (2007) C R Chimie 10:684CrossRefGoogle Scholar
  7. 7.
    Lu Y, Berry M, Pfister TD (2001) Chem Rev 101:3047CrossRefGoogle Scholar
  8. 8.
    Mirkhani V, Moghadam M, Tangestaninejad S, Bahramian B, Mallekpoor-Shalamzari A (2007) Appl Catal A Gen 321:49CrossRefGoogle Scholar
  9. 9.
    Prasetyoko D, Fansuri H, Ramli Z, Endud S, Nur H (2009) Catal Lett 128:177CrossRefGoogle Scholar
  10. 10.
    Sakthivel A, Sun W, Raudaschl-Sieber G, Chiang AST, Hanzlik M, Kühn FE (2006) Catal Commun 7:302CrossRefGoogle Scholar
  11. 11.
    O’Connor KJ, Wey SJ, Burrows CJ (1992) Tetrahedron Lett 33:1001CrossRefGoogle Scholar
  12. 12.
    Kim GJ, Chin JH (1999) Catal Lett 63:83CrossRefGoogle Scholar
  13. 13.
    Bhadbhade MM, Srinivas D (1993) Inorg Chem 32:6122CrossRefGoogle Scholar
  14. 14.
    Lauffer RB, Heistand RH II, Heistand RH II, Que L Jr (1983) Inorg Chem 22:50CrossRefGoogle Scholar
  15. 15.
    Çevik U, Değirmencioğlu I, Ertuğral B, Apaydin G, Baltaş H (2005) Eur Phys J D 36:29CrossRefGoogle Scholar
  16. 16.
    Venkataramanan NS, Kuppuraj G, Rajagopal S (2005) Coord Chem Rev 249:1249CrossRefGoogle Scholar
  17. 17.
    Budagumpi S, Johnson RP, Suh H, Ha C-S, Kim I (2011) Catal Lett 141:1219CrossRefGoogle Scholar
  18. 18.
    Horváth T, Kaizer J, Speier G (2004) J Mol Catal A 215:9CrossRefGoogle Scholar
  19. 19.
    Solomon EI, Baldwin MJ, Lowery MD (1992) Chem Rev 92:521CrossRefGoogle Scholar
  20. 20.
    Koval IA, Gamez P, Reedijk J (2008) In: Pignataro B (ed) Tomorrow’s chemistry today: concepts in nanoscience, organic materials and environmental chemistry. Wiley-VCH, Weinheim, p 101Google Scholar
  21. 21.
    Jacob CR, Varkey SP, Ratnasamy P (1998) Appl Catal 168:353CrossRefGoogle Scholar
  22. 22.
    Jazdzewski BA, Tolman WB (2000) Coord Chem Rev 633:200–202Google Scholar
  23. 23.
    Simándi TM, Simándi LI, Győr M, Rockenbauer A, Gömöry A (2004) J Chem Soc Dalton Trans 7:1056Google Scholar
  24. 24.
    Hassanein M, Abdo M, Gerges S, El-Khalafy S (2008) J Mol Catal A 287:53CrossRefGoogle Scholar
  25. 25.
    Szihyártó IC, Simándi TM, Simándi LI, Korecz L, Nagy N (2006) J Mol Catal A 251:270CrossRefGoogle Scholar
  26. 26.
    Hasegawa KI, Ueno Y (1985) Bull Chem Soc Jpn 58:2832CrossRefGoogle Scholar
  27. 27.
    Tomoda A, Arai S, Ishida R, Shimamoto T, Ohyashiki K (2001) Bioorg Med Chem Lett 11:1057CrossRefGoogle Scholar
  28. 28.
    Maurya MR, Sikarwar S, Joseph T, Halligudi SB (2005) J Mol Catal A 236:132CrossRefGoogle Scholar
  29. 29.
    El-Safty SA, Evans J, El-Seikh MY, Zaki AB (2002) Colloid Surf A 203:217CrossRefGoogle Scholar
  30. 30.
    Taguchi A, Schüth F (2005) Micropor Mesopor Mater 77:1CrossRefGoogle Scholar
  31. 31.
    Nur H, Hamid H, Endud S, Hamdan H, Ramli Z (2006) Mater Chem Phys 96:337CrossRefGoogle Scholar
  32. 32.
    Endud S, Wong KL (2007) Micorpor Mesopor Mater 101:256CrossRefGoogle Scholar
  33. 33.
    Gents MB, Nielsen ST, Mortensen AG, Christophersen C, Fomsgaard IS (2005) Chemosphere 61:74CrossRefGoogle Scholar
  34. 34.
    Gagliardo RW, Chilton WS (1992) J Chem Ecol 18:1683CrossRefGoogle Scholar
  35. 35.
    Chaube VD, Shylesh S, Singh AP (2005) J Mol Catal A 241:79CrossRefGoogle Scholar
  36. 36.
    Bahramian B, Mirkhani V, Moghadam M, Tangestaninejad S (2006) Catal Commun 7:289CrossRefGoogle Scholar
  37. 37.
    Kozlov A, Asakura K, Iwasawa Y (1998) Micropor Mesopor Mater 21:571CrossRefGoogle Scholar
  38. 38.
    El-Khalafy SH, Hassanein M (2012) J Mol Catal A 148:363–364Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Tian-Kae Chin
    • 1
  • Salasiah Endud
    • 1
    • 2
  • Shajarahtunnur Jamil
    • 1
  • Srinivasa Budagumpi
    • 1
  • Hendrik O. Lintang
    • 2
  1. 1.Department of ChemistryFaculty of Science, Universiti Teknologi MalaysiaSkudaiMalaysia
  2. 2.Ibnu Sina Institute for Fundamental Science Studies, Nanotechnology Research Alliance, Universiti Teknologi MalaysiaSkudaiMalaysia

Personalised recommendations