Advertisement

Catalysis Letters

, Volume 143, Issue 2, pp 219–224 | Cite as

Catalytic Roles of Metal Centers in the Selective Oxidation of Cyclohexanol by Cr(salten) Complexes Immobilized on MCM-41

  • Xiaoli Wang
  • Gongde Wu
  • Yunbo Xue
  • Fang Zhang
  • Xianfeng Liu
  • Keqiang Ding
Article

Abstract

A series of transition metal complexes of 3-[N,N′-bis-3-(salicylidenamino)ethyltriamine] (salten) immobilized on MCM-41 were prepared for the solvent and additive-free selective oxidation of cyclohexanol with 30 % hydrogen peroxide (H2O2). The immobilized complexes were effective catalysts and exhibited much higher catalytic performance than their homogeneous analogues. Moreover, the metal centers were found to play important roles in the catalytic performance of immobilized complexes. When the immobilized chromium complex was used as catalyst, the optimal cyclohexanol conversion could reach 90.5 % with 100 % of the selectivity to cyclohexanone. In addition, the catalytic performance remained after being recycled five times.

Graphical Abstract

Owing to the different 3d electronic numbers of metal centers, eight kinds of immobilized Schiff base complexes exhibited significantly different catalytic performance in the selective oxidation of cyclohexanol with 30 % H2O2. The optimal cyclohexanol conversion could reach 90.5 % with 100 % of the selectivity to cyclohexanone over immobilized chromium complex.

Keywords

Cyclohexanol Immobilized Schiff base complex Selective oxidation Solvent-free 

Notes

Acknowledgments

The authors acknowledge the financial supports from the National Natural Science Foundation of China (21003073, 21203093), the Program to Cultivate Outstanding Young Key Teachers of Colleges and Universities of Jiangsu Province, the Collegiate Natural Science Fund of Jiangsu Province (12KJD150007) and the Innovation Technology Funding Project of Nanjing Institute of Technology (CKJ2010012).

References

  1. 1.
    Markó IE, Giles PR, Tsukazaki M, Brown SM, Urch CJ (1996) Science 274:2044CrossRefGoogle Scholar
  2. 2.
    Thorp HH (2000) Science 289:882CrossRefGoogle Scholar
  3. 3.
    Bakac A (1995) In: Karlin DK (ed) Mechanistic and kinetics aspects of transition metal oxygen chemistry in progress in inorganic chemistry, vol 43. Wiley, New York, p 297Google Scholar
  4. 4.
    Hong LS (2001) The Hong Kong Polytechnic University, Doctoral dissertationGoogle Scholar
  5. 5.
    Balbinot L, Schuchardt U, Vera C, Sepúlveda J (2008) Catal Commun 9:1878CrossRefGoogle Scholar
  6. 6.
    Jana SK, Kubota Y, Tatsumi T (2008) J Catal 225:40CrossRefGoogle Scholar
  7. 7.
    Shul’pin GB, Matthes MG, Romakh VB, Barbosa MIF, Aoyagi JLT, Mandelli D (2008) Tetrahedron 64:2143CrossRefGoogle Scholar
  8. 8.
    Stamatis A, Doutsi P, Vartzouma Ch, Christoforidis KC, Deligiannakis Y, Louloudi M (2009) J Mol Catal A 297:44CrossRefGoogle Scholar
  9. 9.
    Arunachalam S, Padma Priya N, Jayabalakrishnan C, Chinnusamy V (2009) Spectrochim Acta A 74:591CrossRefGoogle Scholar
  10. 10.
    Andrews M, Laye RH, Pope’s JA (2009) Transit Met Chem 34:493CrossRefGoogle Scholar
  11. 11.
    Parida KM, Sahoo M, Singha S (2010) J Mol Catal A 329:7CrossRefGoogle Scholar
  12. 12.
    Ayala V, Corma A, Iglesias M, Sánchez F (2004) J Mol Catal A 221:201Google Scholar
  13. 13.
    Karandikar P, Dhanya KC, Deshpande S, Chandwadkar AJ, Sivasanker S, Agashe M (2004) Catal Commun 5:69CrossRefGoogle Scholar
  14. 14.
    Mac Leod TCO, Kirillova MV, Pombeiro AJL, Schiavon MA, Assis MD (2010) Appl Catal A 372:191CrossRefGoogle Scholar
  15. 15.
    Seyedi SM, Sandaroos R, Zohuri GH (2010) Chin Chem Lett 21:1303CrossRefGoogle Scholar
  16. 16.
    Ulaganatha Raja M, Ramesh R (2012) J Organomet Chem 699:5CrossRefGoogle Scholar
  17. 17.
    Ramakrishna D, Bhat BR (2011) Inorg Chem Commun 14:690CrossRefGoogle Scholar
  18. 18.
    Muthu Tamizh M, Mereiter K, Kirchner K, Karvembu R (2012) J Organomet Chem 700:194CrossRefGoogle Scholar
  19. 19.
    Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Nature 359:710CrossRefGoogle Scholar
  20. 20.
    Wang XL, Wu GD, Li JP, Zhao N, Wei W, Sun YH (2007) Stud Surf Sci Catal 170:1374CrossRefGoogle Scholar
  21. 21.
    Wang XL, Wu GD, Li JP, Zhao N, Wei W, Sun YH (2007) J Mol Catal A 276:86CrossRefGoogle Scholar
  22. 22.
    Lim MH, Stein A (1999) Chem Mater 11:3285CrossRefGoogle Scholar
  23. 23.
    Sing KSW, Everett DH, Haul RAW, Moscow L, Pierotti RA, Rouquerol T, Siemienewska T (1985) Pure Appl Chem 57:603CrossRefGoogle Scholar
  24. 24.
    Brunel D, Bellocq N, Sutra P, Cauvel A, Laspéras M, Moreau P, Renzo FD, Galarneau A, Fajula F (1998) Coord Chem Rev 180:1085CrossRefGoogle Scholar
  25. 25.
    Wu GD, Wang XL, Li JP, Zhao N, Wei W, Sun YH (2008) Catal Today 131:402CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Department of Environment and TechnologyNanjing Institute of TechnologyNanjingPeople’s Republic of China

Personalised recommendations