Skip to main content
Log in

Hydrocracking and Hydroisomerization of n-Hexadecane, n-Octacosane and Fischer–Tropsch Wax Over a Pt/SiO2–Al2O3 Catalyst

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The hydroisomerization and hydrocracking of long chain n-paraffins and a Fischer–Tropsch wax produced with a cobalt catalyst were accomplished over a Pt–amorphous silica–alumina catalyst. The relative conversion of the n-hexadecane and n-octacosane mixed feed greatly favored the higher carbon number compound even though the conversions of the pure hydrocarbons were the same within a factor of two or less when converted separately. Thus, vapor equilibrium plays a role for the conversion of the heavier alkanes and in this case the conversion essentially occurs with only the compound present in the liquid phase. The single branched cracked products show a peak at the mid-carbon number, C8 and C14 for the two reactants, but the peak for the multi-branched product occurs at a higher carbon number. Thus, it appears that the multi-branched products are primarily produced in a series reaction with the singly branched compounds being formed as the primary products. The data for wax conversion are consistent with the competitive conversion operating for the higher carbon number compounds; however, the transport of intermediate carbon number products from the reactor occurs more rapidly than their formation rates by cracking reactions. The data clearly show that the hydrocracking of wax is dominated by vapor–liquid equilibrium and that hydrocracking is initially controlled by the compounds present in the liquid phase.

Graphical Abstract

Figure shows the catalyst pore filling with low boiling (left) and high boiling (right) hydrocarbons. Each reactant saturates the catalytic sites and the breaking of C–C bond occurs. Once the products from cracking of the liquid phase go into the vapor phase, it should rapidly pass the catalyst bed. This short contact time on gas phase hydrocarbons relative to the liquid phase, limits the conversion of low boiling point hydrocarbons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 2
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Scherzer J, Gruia AJ (1996) Hydrocracking Science and Technology. Taylor & Francis, Boca Raton

    Google Scholar 

  2. de Klerk A, Furimsky E (2010), Catalysis in the refining of Fischer-Tropsch Syncrude, RSC, Cambridge

  3. deKlerk A (2011), Fischer-Tropsch Refining, Wiley, Weinheim

  4. Coonradt HL, Garwood WE (1964) Ind Eng Chem, Process Des Dev 3:38

  5. Weitkamp J (1975) In: Ward JW, Qader SA (eds) Hydrocracking and Hydrotreating, vol 20. American Chemical Society, pp 1–27

  6. Weitkamp J, Jacobs PA, Martens JA (1983) Appl Catal 8:123

    Article  CAS  Google Scholar 

  7. Martens J, Jacobs P, Weitkamp J (1986) Appl Catal 20:239

    Article  CAS  Google Scholar 

  8. Martens JA, Jacobs P (2001) Stud Surf Sci Catal 137:633

    Article  CAS  Google Scholar 

  9. Kumar H, Froment GF (2007) Ind Eng Chem Res 46:4075

    Article  CAS  Google Scholar 

  10. Valery E, Guillaume D, Surla K, Galtier P, Verstraete J, Schweich D (2007) Ind Eng Chem Res 46:4755

    Article  CAS  Google Scholar 

  11. Leite L, Benazzi E, Marcheal-George N (2001) Catal Today 65:241

    Article  CAS  Google Scholar 

  12. Sato K, Iwata Y, Yoneda T, Nishijima A, Miki Y, Shimada H (1998) Catal Today 45:367

    Article  CAS  Google Scholar 

  13. Dupain X, Krul RA, Makkee M, Moulijin JA (2005) Catal Today 106:288

    Article  CAS  Google Scholar 

  14. Qiu B, Yi X, Lin L, Fang W, Wan H (2008) Catal Today 131:464

    Article  CAS  Google Scholar 

  15. Blomsma E, Martens JA, Jacobs PA (1997) J Catal 165:241

    Article  CAS  Google Scholar 

  16. Rezgui Y, Guemini M (2005) Appl Catal A Gen 282:45

    Article  CAS  Google Scholar 

  17. Fang K, Wei W, Ren J, Sun Y (2004) Catal Lett 93:235

    Article  CAS  Google Scholar 

  18. Mohanty S, Kunzru D, Saraf DN (1990) Fuel 69:1467

    Article  CAS  Google Scholar 

  19. Santilli DS, Zones SI (1990) Catal Lett 7:383

    Article  CAS  Google Scholar 

  20. Calemma V, Peratello S, Perego C (2000) Appl Catal A Gen 190:207

    Article  CAS  Google Scholar 

  21. Lu Y, He M-Y, Shu X-T, Zong B-N (2003) Energy Fuel 17:1040

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Commonwealth of Kentucky.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burtron H. Davis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, J., Ma, W., Keogh, R.A. et al. Hydrocracking and Hydroisomerization of n-Hexadecane, n-Octacosane and Fischer–Tropsch Wax Over a Pt/SiO2–Al2O3 Catalyst. Catal Lett 142, 1295–1305 (2012). https://doi.org/10.1007/s10562-012-0910-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-012-0910-5

Keywords

Navigation