Advertisement

Catalysis Letters

, Volume 142, Issue 11, pp 1295–1305 | Cite as

Hydrocracking and Hydroisomerization of n-Hexadecane, n-Octacosane and Fischer–Tropsch Wax Over a Pt/SiO2–Al2O3 Catalyst

  • Jungshik Kang
  • Wenping Ma
  • Robert A. Keogh
  • Wilson D. Shafer
  • Gary Jacobs
  • Burtron H. Davis
Article

Abstract

The hydroisomerization and hydrocracking of long chain n-paraffins and a Fischer–Tropsch wax produced with a cobalt catalyst were accomplished over a Pt–amorphous silica–alumina catalyst. The relative conversion of the n-hexadecane and n-octacosane mixed feed greatly favored the higher carbon number compound even though the conversions of the pure hydrocarbons were the same within a factor of two or less when converted separately. Thus, vapor equilibrium plays a role for the conversion of the heavier alkanes and in this case the conversion essentially occurs with only the compound present in the liquid phase. The single branched cracked products show a peak at the mid-carbon number, C8 and C14 for the two reactants, but the peak for the multi-branched product occurs at a higher carbon number. Thus, it appears that the multi-branched products are primarily produced in a series reaction with the singly branched compounds being formed as the primary products. The data for wax conversion are consistent with the competitive conversion operating for the higher carbon number compounds; however, the transport of intermediate carbon number products from the reactor occurs more rapidly than their formation rates by cracking reactions. The data clearly show that the hydrocracking of wax is dominated by vapor–liquid equilibrium and that hydrocracking is initially controlled by the compounds present in the liquid phase.

Graphical Abstract

Figure shows the catalyst pore filling with low boiling (left) and high boiling (right) hydrocarbons. Each reactant saturates the catalytic sites and the breaking of C–C bond occurs. Once the products from cracking of the liquid phase go into the vapor phase, it should rapidly pass the catalyst bed. This short contact time on gas phase hydrocarbons relative to the liquid phase, limits the conversion of low boiling point hydrocarbons.

Keywords

Hydrocracking Hydroisomerization Pt/silica–alumina n-Hexadecane n-Octacosane Fischer–Tropsch wax Iso/normal ratio 

Notes

Acknowledgments

This work was supported by the Commonwealth of Kentucky.

References

  1. 1.
    Scherzer J, Gruia AJ (1996) Hydrocracking Science and Technology. Taylor & Francis, Boca RatonGoogle Scholar
  2. 2.
    de Klerk A, Furimsky E (2010), Catalysis in the refining of Fischer-Tropsch Syncrude, RSC, CambridgeGoogle Scholar
  3. 3.
    deKlerk A (2011), Fischer-Tropsch Refining, Wiley, WeinheimGoogle Scholar
  4. 4.
    Coonradt HL, Garwood WE (1964) Ind Eng Chem, Process Des Dev 3:38Google Scholar
  5. 5.
    Weitkamp J (1975) In: Ward JW, Qader SA (eds) Hydrocracking and Hydrotreating, vol 20. American Chemical Society, pp 1–27Google Scholar
  6. 6.
    Weitkamp J, Jacobs PA, Martens JA (1983) Appl Catal 8:123CrossRefGoogle Scholar
  7. 7.
    Martens J, Jacobs P, Weitkamp J (1986) Appl Catal 20:239CrossRefGoogle Scholar
  8. 8.
    Martens JA, Jacobs P (2001) Stud Surf Sci Catal 137:633CrossRefGoogle Scholar
  9. 9.
    Kumar H, Froment GF (2007) Ind Eng Chem Res 46:4075CrossRefGoogle Scholar
  10. 10.
    Valery E, Guillaume D, Surla K, Galtier P, Verstraete J, Schweich D (2007) Ind Eng Chem Res 46:4755CrossRefGoogle Scholar
  11. 11.
    Leite L, Benazzi E, Marcheal-George N (2001) Catal Today 65:241CrossRefGoogle Scholar
  12. 12.
    Sato K, Iwata Y, Yoneda T, Nishijima A, Miki Y, Shimada H (1998) Catal Today 45:367CrossRefGoogle Scholar
  13. 13.
    Dupain X, Krul RA, Makkee M, Moulijin JA (2005) Catal Today 106:288CrossRefGoogle Scholar
  14. 14.
    Qiu B, Yi X, Lin L, Fang W, Wan H (2008) Catal Today 131:464CrossRefGoogle Scholar
  15. 15.
    Blomsma E, Martens JA, Jacobs PA (1997) J Catal 165:241CrossRefGoogle Scholar
  16. 16.
    Rezgui Y, Guemini M (2005) Appl Catal A Gen 282:45CrossRefGoogle Scholar
  17. 17.
    Fang K, Wei W, Ren J, Sun Y (2004) Catal Lett 93:235CrossRefGoogle Scholar
  18. 18.
    Mohanty S, Kunzru D, Saraf DN (1990) Fuel 69:1467CrossRefGoogle Scholar
  19. 19.
    Santilli DS, Zones SI (1990) Catal Lett 7:383CrossRefGoogle Scholar
  20. 20.
    Calemma V, Peratello S, Perego C (2000) Appl Catal A Gen 190:207CrossRefGoogle Scholar
  21. 21.
    Lu Y, He M-Y, Shu X-T, Zong B-N (2003) Energy Fuel 17:1040CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Jungshik Kang
    • 1
  • Wenping Ma
    • 1
  • Robert A. Keogh
    • 1
  • Wilson D. Shafer
    • 1
  • Gary Jacobs
    • 1
  • Burtron H. Davis
    • 1
  1. 1.Center for Applied Energy ResearchUniversity of KentuckyLexingtonUSA

Personalised recommendations