Catalysis Letters

, Volume 142, Issue 10, pp 1211–1217 | Cite as

Vacancy-Driven Surface Segregation in Ni x Mg1−x O(100) Solid Solutions from First Principles Calculations



Reduced Ni x Mg1−x O solid solutions are promising catalytic materials for the dry reforming of methane with carbon dioxide, a reaction of tremendous importance that converts two green-house gases into syn-gas. Conventional nickel-based catalysts have been found to encounter carbon deposition (i.e., coking), one of the major resources that cause the catalyst deactivation. Previous studies suggested that MgO-supported Ni nanoparticles produced from the reduction of Ni x Mg1−x O can inhibit the accumulation of carbon. The efficiency and durability of the catalyst strongly depends on the morphology. Here we employed density functional theory to investigate the structural changes of the Ni x Mg1−x O(100) solid solution under different conditions. Our results show that Ni ions preferentially anti-segregate to the subsurface layers of the MgO matrix during the NiO–MgO intermixing. Under reducing conditions, Ni ions facilitates the generation of oxygen vacancies, which prefer to couple together with Ni ions inside the MgO matrix to form a Ni ion–oxygen vacancy pair. In addition, the segregation of a Ni ion–oxygen vacancy pair can be controlled by changing the concentrations of Ni ions. This is driven by the strong interaction between oxygen vacancies and Ni ions. It is well known that oxygen vacancies play an important role during a catalytic reaction on an oxide, providing active sites to help the adsorption and dissociation of reaction intermediates. Our results show that in mixed oxides oxygen vacancies could also drive the segregation of the catalytically active components and provide new opportunities to tune the catalytic activity of oxides.

Graphical Abstract


Mixed oxides Segregation NiO–MgO Oxygen vacancy DFT 



The authors are indebted to Dr. M. S. Hybertsen for stimulating discussions and for carefully reading the manuscript. This work was carried out at Brookhaven National Laboratory (BNL) under Contract No. DE-AC02-98CH10886 with the US Department of Energy, Office of Science. The calculations utilized resources at the BNL Center for Functional Nanomaterials (CFN).


  1. 1.
    Yang L, Wang SZ, Blinn K, Liu MF, Liu Z, Cheng Z, Liu ML (2009) Science 326:126CrossRefGoogle Scholar
  2. 2.
    Yang F, Kundu S, Vidal AB, Ramírez PJ, Senanayake SD, Stacchiola D, Evans J, Liu P, Rodriguez JA (2011) Angew Chem Int Ed 50:10198CrossRefGoogle Scholar
  3. 3.
    Park B, Graciani J, Evans J, Stacchiola D, Ma S, Liu P, Nambu A, Fdez SJ, Hrbek J, Rodriguez JA (2009) Proc Natl Acad Sci USA 106:4975CrossRefGoogle Scholar
  4. 4.
    Yang F, Choi Y, Agnoli S, Liu P, Stacchiola D, Hrbek J, Rodriguez JA (2011) J Phys Chem C 115:23062CrossRefGoogle Scholar
  5. 5.
    Campbell CT, Peden CHF (2005) Science 309:713CrossRefGoogle Scholar
  6. 6.
    Navarro RM, Pena MA, Fierro JLG (2007) Chem Rev 107:3952CrossRefGoogle Scholar
  7. 7.
    Kroll VCH, Swaan HM, Mirodatos C (1996) J Catal 161:409CrossRefGoogle Scholar
  8. 8.
    Rostrupnielsen JR, Hansen JHB (1993) J Catal 144:38CrossRefGoogle Scholar
  9. 9.
    Kroll VCH, Swaan HM, Lacombe S, Mirodatos C (1996) J Catal 164:387CrossRefGoogle Scholar
  10. 10.
    Sarusi I, Fodor K, Baán K, Oszkó A, Pótári G, Erdohelyi A (2011) Catal Today 171:132CrossRefGoogle Scholar
  11. 11.
    Ruckenstein E, Hu YH (1995) Appl Catal A Gen 133:149CrossRefGoogle Scholar
  12. 12.
    Kumar P, Sun Y, Idem RO (2007) Energy Fuels 21:3113CrossRefGoogle Scholar
  13. 13.
    Cui Y, Zhang H, Xu H, Li W (2007) Appl Catal A Gen 331:60CrossRefGoogle Scholar
  14. 14.
    Bellido JDA, De Souza JE, M’Peko J-C, Assaf EM (2009) Appl Catal A Gen 358:215CrossRefGoogle Scholar
  15. 15.
    Di Valentin C, Giordano L, Pacchioni G, Rösch N (2003) Surf Sci 522:175CrossRefGoogle Scholar
  16. 16.
    Giordano L, Pacchioni G, Illas G, Rösch N (2002) Surf Sci 499:73CrossRefGoogle Scholar
  17. 17.
    Del Vitto A, Giordano L, Pacchioni G, Rösch N (2005) Surf Sci 575:103CrossRefGoogle Scholar
  18. 18.
    Ruckenstein E, Hu YH (1995) Appl Catal A Gen 133:149CrossRefGoogle Scholar
  19. 19.
    Ruckenstein E, Hu YH (1998) Catal Lett 51:183CrossRefGoogle Scholar
  20. 20.
    Ruckenstein E, Hu YH (1997) Appl Catal A Gen 154:185CrossRefGoogle Scholar
  21. 21.
    Ruckenstein E, Hu YH (1998) Catal Lett 51:183CrossRefGoogle Scholar
  22. 22.
    Hu YH, Ruckenstein E (1997) Catal Lett 43:71CrossRefGoogle Scholar
  23. 23.
    Martra G, Marchese L, Arena F, Parmaliana A, Coluccia S (1994) Topics Catal 1:63CrossRefGoogle Scholar
  24. 24.
    Hu YH, Ruckenstein E (1996) Catal Lett 36:145CrossRefGoogle Scholar
  25. 25.
    Pacchioni G (2003) Chem Phys Chem 4:1041CrossRefGoogle Scholar
  26. 26.
    Rodriguez JA, Hanson JC, Frenkel AI, Kim JY, Perez M (2002) J Am Chem Soc 124:346CrossRefGoogle Scholar
  27. 27.
    Ruban AV, Skriver HL, Nørskov JK (1999) Phys Rev B 59:15990CrossRefGoogle Scholar
  28. 28.
    Yudanov I, Pacchioni G, Neyman K, Rösch N (1997) J Phys Chem B 101:2786CrossRefGoogle Scholar
  29. 29.
    López N, Illas F (1998) J Phys Chem B 102:1430CrossRefGoogle Scholar
  30. 30.
    Valero R, Gomes JRB, Truhlar DG, Illas F (2010) J Chem Phys 132:104701CrossRefGoogle Scholar
  31. 31.
    Kresse G, Hafner JJ (1993) Phys Rev B 47:558CrossRefGoogle Scholar
  32. 32.
    Kresse G, Furthmuller JJ (1996) Phys Rev B 54:11169CrossRefGoogle Scholar
  33. 33.
    Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh D, Fiolhais C (1992) Phys Rev B 46:6671CrossRefGoogle Scholar
  34. 34.
    Blöchl P (1994) Phys Rev B 50:17953CrossRefGoogle Scholar
  35. 35.
    Monkhost H, Pack J (1993) Phys Rev B 47:558CrossRefGoogle Scholar
  36. 36.
    Cimino A, LoJacono M, Porta P, Valigi M (1967) Z Phys Chem 55:14CrossRefGoogle Scholar
  37. 37.
    Llofreda D (2003) Surf Sci 600:2103CrossRefGoogle Scholar
  38. 38.
    Wander A, Bush IJ, Harrison NM (2003) Phys Rev B 68:233405CrossRefGoogle Scholar
  39. 39.
    Di Valentin C, Finazzi E, Pacchioni G (2005) Surf Sci 591:70CrossRefGoogle Scholar
  40. 40.
    Giordano L, Di Valentin C, Pacchioni G, Goniakowski J (2005) Chem Phys 309:41CrossRefGoogle Scholar
  41. 41.
    Ferrari AM, Pisani C, Cinquini F, Giordano L, Pacchioni G (2007) J Chem Phys 127:174711CrossRefGoogle Scholar
  42. 42.
    Zhenpeng H, Horia M (2011) J Phys Chem C 115:17898CrossRefGoogle Scholar
  43. 43.
    Schwartz M, Gershaw R, Dwight K, Wold A (1987) Mat Res Bull 22:609CrossRefGoogle Scholar
  44. 44.
    Carrasco J, Lopez N, Illas F, Freund HJ (2006) J Chem Phys 125:074711CrossRefGoogle Scholar
  45. 45.
    Graciani J, Plata JJ, Sanz JF, Liu P, Rodriguez JA (2010) J Chem Phys 132:104703CrossRefGoogle Scholar
  46. 46.
    Parmaliana A, Arena F, Frusteri F, Giordano N (1990) J Chem Soc, Faraday Trans 86:2663CrossRefGoogle Scholar
  47. 47.
    Liu P, Logadóttir Á, Nørskov JK (2003) Electrochimina Acta 48:3731CrossRefGoogle Scholar
  48. 48.
    Shao M, Liu P, Adzic RR (2007) J Phys Chem B 111:6772CrossRefGoogle Scholar
  49. 49.
    Wei X, Pan W, Cheng L, Li B (2009) Solid State Ionics 180:13CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Center for Functional NanomaterialsBrookhaven National LaboratoryUptonUSA

Personalised recommendations