Catalysis Letters

, Volume 142, Issue 10, pp 1190–1196 | Cite as

Selective Hydrodeoxygenation of Guaiacol Catalyzed by Platinum Supported on Magnesium Oxide

  • Tarit Nimmanwudipong
  • Ceren Aydin
  • Jing Lu
  • Ron C. Runnebaum
  • Kevin C. Brodwater
  • Nigel D. Browning
  • David E. Block
  • Bruce C. Gates


The conversion of guaiacol catalyzed by Pt/MgO in the presence of H2 was investigated with a flow reactor at 573 K and 140 kPa. Among the dozens of reaction products identified by gas chromatography (GC) and GC/mass spectrometry, the predominant ones were phenol, catechol, and (surprisingly) cyclopentanone, with others including methane, n-butane, butenes, n-pentane, and carbon monoxide. The predominant reactions were hydrodeoxygenation (with about 70 % of the guaiacol that was converted forming products that were reduced in oxygen). In contrast, when the catalyst incorporated an acidic support, Pt/γ-Al2O3, other reactions became kinetically significant, exemplified by transalkylation, and the selectivity to deoxygenated products was reduced to about half the value observed with Pt/MgO at guaiacol conversions in the range of about 6–20 %. Pt/MgO underwent deactivation less rapidly than Pt/γ-Al2O3, consistent with a lower rate of coke formation and with observations by scanning transmission electron microscopy showing that the average platinum cluster diameter, approximately 1–2 nm in each catalyst, did not change significantly during operation. The results point to the advantages of basic supports for noble metal hydrodeoxygenation catalysts.

Graphical Abstract


Hydrodeoxygenation Platinum MgO support Biomass conversion Lignin Biofuels 



This research was funded by a fellowship provided by Chevron (T.N.), by the Ernest Gallo Endowed Chair in Viticulture and Enology, and by DOE (Basic Energy Sciences) Grant No. DE-FG02-03ER46057 (C.A.), Grant No. DE-SC0005822 (J.L.), and the University of California Lab Fee Program. We thank Kevin Tay and Leng Mut for help with the experiments. An Agilent Technologies Foundation Research Project Gift provided a GC7890 Refinery Gas Analyzer. We acknowledge beam time and the support of the DOE Division of Materials Sciences for its role in the operation and development of beam line X-18B at the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory. We thank the beamline staff for valuable support.

Supplementary material

10562_2012_884_MOESM1_ESM.doc (1.3 mb)
Supplementary material 1 (DOC 1287 kb)


  1. 1.
    Zakzeski J, Bruijnincx PCA, Jongerius AL, Weckhuysen BM (2010) Chem Rev 110:3552CrossRefGoogle Scholar
  2. 2.
    Huber GW, Iborra S, Corma A (2006) Chem Rev 106:4044CrossRefGoogle Scholar
  3. 3.
    Calvo-Flores FG, Dobado JA (2010) Chem Sus Chem 3:1227Google Scholar
  4. 4.
    Czernik S, French R (2010) Fuel Proc Technol 91:25CrossRefGoogle Scholar
  5. 5.
    Elliot DC (2007) Energy Fuels 21:1792CrossRefGoogle Scholar
  6. 6.
    Pandey MP, Kim CS (2011) Chem Eng Technol 34:29CrossRefGoogle Scholar
  7. 7.
    Choudhary TV, Phillips CB (2011) Appl Catal A 397:1CrossRefGoogle Scholar
  8. 8.
    Gutierrez A, Kaila RK, Honkela ML, Siloor R, Krause AOI (2009) Catal Today 147:239CrossRefGoogle Scholar
  9. 9.
    Zhao HY, Li D, Bui P, Oyama ST (2010) Appl Catal A 391:305Google Scholar
  10. 10.
    Bui VN, Laurenti D, Afanasiev P, Geantet C (2010) Appl Catal B 101:239Google Scholar
  11. 11.
    Zhao C, Kou Y, Lemonidou AA, Li X, Lercher JA (2009) Angew Chem Int Ed 48:3987CrossRefGoogle Scholar
  12. 12.
    Runnebaum RC, Nimmanwudipong T, Limbo RL, Block DE, Gates BC (2012) Catal Lett 142:7CrossRefGoogle Scholar
  13. 13.
    Jongerius AL, Jastrzebski R, Bruijnincx PCA, Weckhuysen BM (2012) J Catal 285:315CrossRefGoogle Scholar
  14. 14.
    Nimmanwudipong T, Runnebaum RC, Ebeler SE, Block DE, Gates BC (2012) Catal Lett 142:151CrossRefGoogle Scholar
  15. 15.
    Zhu X, Lobban LL, Mallinson RG, Resasco DE (2011) J Catal 281:21CrossRefGoogle Scholar
  16. 16.
    Nimmanwudipong T, Runnebaum RC, Block DE, Gates BC (2011) Catal Lett 141:779CrossRefGoogle Scholar
  17. 17.
    Runnebaum RC, Nimmanwudipong T, Block DE, Gates BC (2011) Catal Lett 141:817CrossRefGoogle Scholar
  18. 18.
    Zhu X, Mallinson RG, Resasco DE (2010) Appl Catal A 379:172CrossRefGoogle Scholar
  19. 19.
    Hong DY, Miller SJ, Agrawal PK, Jones CW (2010) Chem Commun 46:1038CrossRefGoogle Scholar
  20. 20.
    Runnebaum RC, Lobo-Lapidus RJ, Nimmanwudipong T, Block DE, Gates BC (2011) Energy Fuels 25:4776CrossRefGoogle Scholar
  21. 21.
    Uzun A, Ortalan V, Browning ND, Gates BC (2009) Chem Commun 31:4657CrossRefGoogle Scholar
  22. 22.
    Lin Y, Finke RG (1994) J Am Chem Soc 116:8335CrossRefGoogle Scholar
  23. 23.
    Jentys A (1999) Phys Chem Chem Phys 1:4059CrossRefGoogle Scholar
  24. 24.
    Bhore NA, Klein MT, Bischoff KB (1990) Ind Eng Chem Res 29:313CrossRefGoogle Scholar
  25. 25.
    Bhore NA, Klein MT, Bischoff KB (1990) Chem Eng Sci 45:2109CrossRefGoogle Scholar
  26. 26.
    Cavani F, Lercher JA (2010) J Catal 269:340CrossRefGoogle Scholar
  27. 27.
    Nimmanwudipong T, Runnebaum RC, Block DE, Gates BC (2011) Energy Fuels 25:3417CrossRefGoogle Scholar
  28. 28.
    Maire G, Plouidy G, Prudhomme JC, Gault FG (1965) J Catal 4:556CrossRefGoogle Scholar
  29. 29.
    McVicker GB, Daage M, Touvelle MS, Hudson CW, Klein DP, Baird WC Jr, Cook BR, Chen JG, Hantzer S, Vaughan DEW, Ellis ES, Feeley OC (2002) J Catal 210:137CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Tarit Nimmanwudipong
    • 1
  • Ceren Aydin
    • 1
  • Jing Lu
    • 1
  • Ron C. Runnebaum
    • 1
  • Kevin C. Brodwater
    • 1
  • Nigel D. Browning
    • 2
  • David E. Block
    • 1
    • 3
  • Bruce C. Gates
    • 1
  1. 1.Department of Chemical Engineering and Materials ScienceUniversity of CaliforniaDavisUSA
  2. 2.Pacific Northwest National LaboratoryRichlandUSA
  3. 3.Department of Viticulture and EnologyUniversity of CaliforniaDavisUSA

Personalised recommendations