Advertisement

Catalysis Letters

, Volume 142, Issue 9, pp 1141–1149 | Cite as

Effect of SiO2–Al2O3 Composition on the Catalytic Performance of the Re2O7/SiO2–Al2O3 Catalysts in the Metathesis of Ethylene and 2-Pentene for Propylene Production

  • Weena Phongsawat
  • Benjamas Netiworaruksa
  • Kongkiat Suriye
  • Piyasan Praserthdam
  • Joongjai Panpranot
Article

Abstract

The production of propylene via a gas-phase metathesis of ethylene and 2-pentene has been studied over the Re2O7/SiO2xAl2O catalysts containing various SiO2–Al2O3 compositions (13, 25, 50, 75, and 100 wt% Al2O3). Using ethylene and 2-pentene as the reactants, isomerization of the initial 1-butene product into 2-butenes and a subsequent secondary metathesis reaction between 2-butenes and excess ethylene enhanced the propylene formation so that propylene yield higher than its stoichiometric amount (>50 %) could be obtained. While the pure Al2O3 supported Re2O7 catalyst possessed only the first type of isolated monomeric ReO4 tetrahedra structure with a stronger Re–O-support bond, the second type with a weaker Re–O-support bond was observed on the SiO2–Al2O3 supported ones. The double-bond isomerization and the metathesis activities were optimized to produce the highest propylene yield over the Re2O7/SiO2–Al2O3 catalyst containing 50 wt% Al2O3.

Graphical Abstract

While the pure Al2O3 supported Re2O7 catalyst possessed only the first type of isolated monomeric ReO4 tetrahedra structure with a stronger Re–O-support bond, the second type with a weaker Re–O-support bond was observed on the Re2O7/SiO2–Al2O3 catalysts and suggested to be the double-bond isomerization active sites. The isomerization of the initial 1-butene product into 2-butenes and a subsequent secondary metathesis reaction between these 2-butenes and excess ethylene resulted in the higher propylene yield. The optimum amount of alumina for the highest propylene yield was 50 wt%.

Keywords

Metathesis Isomerization Propylene production 2-pentene Silica–alumina 

Notes

Acknowledgments

The financial supports from the Thailand Research Fund (TRF), the Office of Higher Education Commission (CHE), and the CU-NRU (AM1088A) are gratefully acknowledged. The authors would like to thank the Royal Golden Jubilee Ph.D. scholarship from TRF and SCG chemicals Co., Ltd for W.P.

References

  1. 1.
    Mol JC (2004) J Mol Catal A Chem 213:39CrossRefGoogle Scholar
  2. 2.
    Mol JC (1999) Catal Today 51:289CrossRefGoogle Scholar
  3. 3.
    Luckner RC, Wills GB (1973) J Catal 28:83CrossRefGoogle Scholar
  4. 4.
    Ivin KJ, Mol JC (1997) Olefin metathesis and metathesis polymerization. Academic Press, San DiegoGoogle Scholar
  5. 5.
    Park YK, Lee CW, Kang NY, Choi WC, Choi S, Oh SH, Park DS (2010) Catal Surv Asia 14:75CrossRefGoogle Scholar
  6. 6.
    Cornil B, Herrmann AW, Schogl R, Wong C (2000) A concise encyclopedia catalysis from A to Z. Wiley, New YorkGoogle Scholar
  7. 7.
    Gartside RJ, Stanley SJ (2011) C5 metathesis for increased propylene, In: AIChE ethylene producers conference proceedingsGoogle Scholar
  8. 8.
    Phongsawat W, Netivorruksa B, Suriye K, Dokjampa S, Praserthdam P, Panpranot J (2012) J Nat Gas Chem 21:83CrossRefGoogle Scholar
  9. 9.
    Phongsawat W, Netivorruksa B, Suriye K, Dokjampa S, Praserthdam P, Panpranot J (2012) J Nat Gas Chem 21:158CrossRefGoogle Scholar
  10. 10.
    Cosyns J, Chodorge J, Commereuc D, Torck B (1998) Hydrocarbon Process 77:61Google Scholar
  11. 11.
    Sibeijn M, Mol JC (1990) Appl Catal 67:279CrossRefGoogle Scholar
  12. 12.
    Moulijn JA, Mol JC (1988) J Mol Catal 46:1CrossRefGoogle Scholar
  13. 13.
    Andreini A, Xiaoding X, Mol JC (1986) Appl Catal 27:31CrossRefGoogle Scholar
  14. 14.
    Sibeijn M, Spronk R, van Veen JAR, Mol JC (1991) Catal Lett 8:201CrossRefGoogle Scholar
  15. 15.
    Sheu FC, Hong CT, Hwang WL, Shih CJ, Wu JC, Yeh CT (1992) Catal Lett 14:297CrossRefGoogle Scholar
  16. 16.
    Balcar H, Hamtil R, Zilkova N, Cejka J (2004) Catal Lett 97:25CrossRefGoogle Scholar
  17. 17.
    Onaka M, Oikawa T (2002) Chem Lett 8: 850Google Scholar
  18. 18.
    Oikawa T, Ookoshi T, Tanaka T, Yamamoto T, Onaka M (2004) Microporous Mesoporous Mater 74:93CrossRefGoogle Scholar
  19. 19.
    Balcar H, Cejka J (2002) Macromol Symp 293:43CrossRefGoogle Scholar
  20. 20.
    Martin-Aranda RM, Cejka J (2010) Top Catal 53:141CrossRefGoogle Scholar
  21. 21.
    Zukal A, Siklova H, Cejka J (2008) Langmuir 24:9837CrossRefGoogle Scholar
  22. 22.
    Gommes CJ, Friedrich H, Wolters M, De Jongh PE, De Jong KP (2009) Chem Mater 21:1311CrossRefGoogle Scholar
  23. 23.
    Schmidt F (2001) Appl Catal. A 221:15Google Scholar
  24. 24.
    Ellison A, Coverdale AK, Dearing PF (1983) Appl Catal 8:109Google Scholar
  25. 25.
    Kapteijn F (1980) Catalytic metathesis of unsaturated esters by alumina supported rhenium oxide. PhD thesis, AmsterdamGoogle Scholar
  26. 26.
    Xu X, Boelhouwer C, Vonk D, Benecke JI, Mol JC (1985) J Mol Catal 36:47Google Scholar
  27. 27.
    Xiaoding X, Boelhouwer C, Vonk D, Benecke JI, Mol JC (1986) J Mol Catal 36:47CrossRefGoogle Scholar
  28. 28.
    Mandelli D, Van Vliet MCA, Arnold U, Sheldon RA, Schuchardt U (2001) J Mol Catal A Chem 168:165CrossRefGoogle Scholar
  29. 29.
    Xiaoding X, Mol JC, Boelhouwer C (1986) J Chem Soc Faraday Trans 1F(82):2707Google Scholar
  30. 30.
    Bakala PC, Briot E, Millot Y, Piquemal JY, Bregeault JM (2008) J Catal 258:61CrossRefGoogle Scholar
  31. 31.
    Andreini A, Mol JC (1985) J Chem Soc Faraday Trans 1F(81):1705Google Scholar
  32. 32.
    Bregeault J-M, El Ali B, Martin J, Martin C, Derdar F, Bugli G, Delamar M (1988) J Mol Catal 46:37CrossRefGoogle Scholar
  33. 33.
    Debecker DP, Hauwaert D, Stoyanova M, Barkschat A, Rodemerck U, Gaigneaux EM (2010) Appl Catal. A 391:78Google Scholar
  34. 34.
    Aritani H, Fukuda O, Yamamoto T, Tanaka T, Imamura S (2000) Chem Lett 1:66Google Scholar
  35. 35.
    Handzlik J, Ogonowski J, Stoch J, Mikolajczyk M, Michorczyk P (2006) Appl Catal. A 312:213Google Scholar
  36. 36.
    Handzlik J, Ogonowski J, Stoch J, Mikolajczyk M (2005) Catal Lett 101:65CrossRefGoogle Scholar
  37. 37.
    Mol JC (1994) Catal Lett 23:113CrossRefGoogle Scholar
  38. 38.
    Debecker DP, Bouchmella K, Poleunis C, Eloy P, Bertrand P, Gaigneaux EM, Mutin PH (2009) Chem Mater 21:2817CrossRefGoogle Scholar
  39. 39.
    Handzlik J, Sautet P (2008) J Catal 256:1CrossRefGoogle Scholar
  40. 40.
    Mol JC, Andreini A (1988) J Mol Catal 46:151CrossRefGoogle Scholar
  41. 41.
    Spronk R, Andreini A, Mol JC (1991) J Mol Catal 65:219CrossRefGoogle Scholar
  42. 42.
    Rodella CB, Cavalcante JAM, Buffon R (2004) Appl Catal A 274:213CrossRefGoogle Scholar
  43. 43.
    Rost AMJ, Schneider H, Zoller JP, Herrmann WA, Kuhn FE (2005) J Organomet Chem 690:4712CrossRefGoogle Scholar
  44. 44.
    Okada K, Tomita T, Kameshima Y, Yasumori A, MacKenzie KJD (1999) J Mater Chem 9:1307CrossRefGoogle Scholar
  45. 45.
    Amigues P, Chauvin Y, Commereuc D, Lai CC, Liu YH, Pan JM (1990) Hydrocarbon Process Int Ed 69:79Google Scholar
  46. 46.
    Kapteijn F, Homburg E, Mol JC (1983) J Chem Thermodyn 15:147CrossRefGoogle Scholar
  47. 47.
    Chauvin Y, Commereuc D (1992) J Chem Soc Chem Commun 462Google Scholar
  48. 48.
    Handzlik J, Ogonowski J (1998) Politechnika Krakowska, seria Inzynieria i, eds. Technologia Chemiczna, KrakówGoogle Scholar
  49. 49.
    Wang Y, Chen Q, Yang W, Xie Z, Xu W, Huang D (2003) Appl Catal A 250:25CrossRefGoogle Scholar
  50. 50.
    Wagner CD, Riggs WM, Davis LE, Moulder JF, Muilenberg GE (1979) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer Corporation, Eden PrairieGoogle Scholar
  51. 51.
    Balcar H, Zilkova N, Bastl Z, Dedecek J, Hamtil R, Brabec L, Zukal A, CŒejka J (2007) Stud Surf Sci Catal 170:1145Google Scholar
  52. 52.
    Yuan Y, Iwasawa Y (2002) J Phys Chem B 106:4441CrossRefGoogle Scholar
  53. 53.
    Stoyanova M, Rodemerck U, Bentrup U, Dingerdissen U, Linke D, Mayer RW, Lansink Rotgerink HGJ, Tacke T (2008) Appl Catal A 340:242Google Scholar
  54. 54.
    Okal J, Baran J (2001) J Catal 203:466CrossRefGoogle Scholar
  55. 55.
    Edreva-Kardjieva RM, Vuurman MA, Mol JC (1992) J Mol Catal 76:297CrossRefGoogle Scholar
  56. 56.
    Daniell W, Weingand T, Knozinger H (2003) J Mol Catal A Chem 204–205:519CrossRefGoogle Scholar
  57. 57.
    Lacheen HS, Cordeiro PJ, Iglesia E (2006) J Am Chem Soc 128:15082CrossRefGoogle Scholar
  58. 58.
    Vuurman MA, Stufkens DJ, Oskam A, Wachs IE (1992) J Mol Catal 76:263CrossRefGoogle Scholar
  59. 59.
    Olsthoorn AA, Boelhouwer C (1976) J Catal 44:207CrossRefGoogle Scholar
  60. 60.
    Bregeault J-M (1992) Catalyse homogene par les complexes des metaux de transition. Masson, ParisGoogle Scholar
  61. 61.
    Wang L, Hall WK (1983) J Catal 82:177CrossRefGoogle Scholar
  62. 62.
    Williams KPJ, Harrison K (1990) J Chem Soc Faraday Trans 86:1603CrossRefGoogle Scholar
  63. 63.
    Wachs IE (1996) Catal Today 27:437CrossRefGoogle Scholar
  64. 64.
    Okal J, Kepinski L, Krajczyk L, Drozd M (1999) J Catal 188:140CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Weena Phongsawat
    • 1
  • Benjamas Netiworaruksa
    • 1
  • Kongkiat Suriye
    • 2
  • Piyasan Praserthdam
    • 1
  • Joongjai Panpranot
    • 1
  1. 1.Department of Chemical Engineering, Faculty of Engineering, Center of Excellence on Catalysis and Catalytic Reaction EngineeringChulalongkorn UniversityBangkokThailand
  2. 2.SCG Chemicals Co., LtdBangkokThailand

Personalised recommendations